从零**放—12 震荡电路(一)

[复制链接]
855|0
手机看帖
扫描二维码
随时随地手机跟帖
nenglee|  楼主 | 2017-5-11 10:08 | 显示全部楼层 |阅读模式
本帖最后由 nenglee 于 2017-5-11 10:17 编辑

从零**放12 震荡电路
        震荡电路相对于来说是电路中比较难的一种电路。下面系统性的讲一下,以及怎么放分析。
1、施密特方波震荡器
        比如Api74HC14就是个施密特触发器,下图就是Api74HC14的内部等价框图

1

1
下边是这个芯片的极限参数

2

2
        它最大输入电压是7伏,里边都是一些非门,它的输入是施密特性质的,那么我们供电是5伏,假如说高于3伏才输出为0,低于1伏才能输出为1,这个叫施密特触发器。因为我们普通的非门假如5伏供电的话,2.5伏附近高于2.5伏输出为0,低于2.5伏输出为1,做为一个反相器来说。普通反相器是有个确定的点的,高于某个值输出为低,低于某个值输出为高,有一个不确定的点,这个点是比较模糊的。但是施密特恰好相反,它的高是必须搞于某一个高点它输出为0,低必须低于某一个低点它输出1,所以说高和低之间有一个重叠区。

        下图是一个施密特震荡电路

3

3
        这种特性的电路呢,01都有个门限,有交错并且是保持前一个状态的门限,那它是怎么实现的呢?比如上图左边电路的施密特触发器,它是5伏的,我们假设3伏为高电平输入,1伏为低电平输入我们来分析一下,刚开始电容上电压为0,于是0输入进去低于1伏,输出为1高电平5伏,5伏通过反馈电阻给电容充电,充电充到1伏,充到1伏没用它不能切换,它要继续往上充充到3伏,超过3伏它才能切换,3伏之后输出一个0低电平,0之后反馈到电容上,电容放电,一直放到低于1伏又开始逆转有输出为高电平5伏,就是这么个原理。0101......这样一个方波。那么我们要想控制高电平和低电平的时间我们可以通过改变电阻大小和电容大小(专业点就是调节频率),如果想控制占空比的话电阻处可以串连两路二极管(一路正向、一路反相),类似于下边的电路二极管的连接方式。

4

4
        施密特触发器是比较常用的产生一个脉冲方波的电路,因为它很简单。手机上以前需要一个三兆多的一个时钟给迷笛音乐的时钟,当时想到了这个最简单的方法就是用这个施密特触发器的方式,手机上有个一个专用的小芯片很小的单路的施密特触发器,那么再加上外部的一个电容和电阻就搞定了,所以说电路非常简单,但是这个方案后来被否定了,原因是手机上别人打进电话来的时候会导致手机的电压会波动(电池电压),波动之后导致LDO输出的电压会低一点,施密特电路工作频率跟供电电压有极大关系,电压稍微一低声音就能够听的出来,声音会有些不对劲,因为声音对频率是很敏感的,所以用它做为声音的时钟并不是很理想,因为频率太不稳定了(受电源电压影响)。

5

5
        上边的电路是NE555时机电路,数字电路。也就是说单片机没有发展起来之前这个时机电路是非常常用的,比如弄个定时啊,它实际上就是多功能的施密特触发器,可以构成很多功能,可以看到第一个图的左边电路的RCNE555电路的RC,其实它内部也是非门电路,它还可以通过各种组合实现很多功能的,所以NE555是最著名的一个时机电路,有单片机之后现在用的很少了。

2、运放构成的施密特振荡器

6

6
        这个图在理想运放的时候已经讲过,它就是用运放构成了一个施密特触发器,实现一个脉冲输出。

7

7
        上图所框之处构成了门限,高要高于2/3,低要低于1/3构成这样类似于施密特这样的震荡电路,上边的二极管和电阻实现了高电平的时宽和低电平的时宽。

3、自激式方波振荡器

8

8
        这是一个最经典的一个震荡电路——自激式方波振荡电路,也叫多谐振荡发生器。使用在27MHz的遥控器,遥控飞机啊、遥控汽车啊上的震荡电路就用这个电路做的,还有一些推挽式电路,以前经常做一些逆变器,推挽式电路的驱动也用它做的。这个电路比较有意思,因为是全对称的,大家都不知道怎么分析,下面我们分析下这个电路。
        我们假设这个电路基本是对称的,但是基本对称不完全对称,因为所有东西你做成完全对称是不可能的,假如VT1三极管的放大倍数略大于VT2(条件),VT1BE结,低是0伏的话,那么基极就是0.7伏,基极对应的电阻下方电压是固定的,当开机的时候,R2或者R3设置的偏置让三极管微微的打开,R1向下的通路有个很小的电流就可以了,R2R3的电阻不能太大,一般就是33K,也就是三极管的基极电流不能太大,BC点的电压是一定的我们认为是0.7伏(因为PE结),刚开始电容上是没电的,所以一开始的时候BC点电压是0.7,由于刚开始电容没电,所以A点也是0.7伏,D点也是0.7伏,C点有一定的电流下来,让VT1有略微的导通,B点也一样,略微导通,由于电路不可能完全对称,加入VT1放大倍数比VT2大一点点,那么VT1先导通一点点,那么A点电压会比D点电压更早的低,低一点会反馈到B点(因为电容电压不能突变),于是B点电压会低导致VT2基极电压变低,那么VT2三极管处于截止状态,那么D点的电压由于三极管截止,会迅速给C点和D点间电容充电,当充满电的过程中,同时D点通过电容耦合到C点,那么VT1的三极管持续导通,让A点电压保持低。让VT2继续截止,形成一个闭环的死锁(自激过程)。当D点充电到电源电压之后,自激死锁就失效了,因为D点电压达到了电源电压电容饱和了那么C点和D点电压等电势了就没有电流了,所以VT1的基极电流小了,小了就开始逆转,导致VT1截止,那么A点电压开始升高,那么通过电容耦合到B点,使VT2开始缓慢导通,使D点开始电压降低,最终也是跟D点一样A点达到电源电压,那么A点和B点又是等电势C1电容饱和状态,没有电流流过,之后就是反复这样的动作产生出了方波。
        那么这个电路虽然看着是对称的,但是器件的制作工艺的差异,都有误差的特点来产生不对称的效果,放大倍数不一样之后就有先充电和先到电源电压高点,然后再靠电容两边等电势没有电流产生导致反转(三极管截止),使另一个点电压变高,相应的对边三极管导通,使对端的电压再降低这样的一个反复过程。
        这个自激震荡电路当死锁之后,在电阻给电容的充电时间保证三极管状态稳定,这个保持时间长短就是它的半周期,那么两个合起来就是一个周期。所以这个电路必须有自激、保持、反转(进入饱和态)这几个过程。
        其中,基极的偏置电阻不能太大,否则会出现输出低电平到不了底,会有一些反弹,这会导致在一些场合不适合
        若偏置电阻太小,导致三极管完全导通,两边都导通,就无法起振
以前这个电路用的很多,现在很少用了

4、双管自激升压电路

9

9
        上边这个电路捕鱼机一般用这个电路,电蚊拍也是这个电路,还有些电警棍升压。这个电路是典型的把6伏升成220伏的小功率电路。它的原理跟自激式方波震荡电路原理差不多,也是双管,只是把电容换成了电感(变压器)来处理了。
        我们来分析下,电感6脚接的是6伏的电源,假设刚开机的时候,通过R75的偏置(三极管的偏置电流)通过6脚到7脚给三极管提供电流,Q8Q7不可能完全对称,于是导致一边多一点一边少一点,于是8910处产生的磁场不能完全抵消,于是在567感应出7脚正5脚负的,这个感应恰好又加速Q8三极管饱和导通Q7饱和截止,这就是个自激过程,接下来就是个稳态过程,那么9脚的主电流会通过6脚开始注入,电压加在电感上了,6伏完全加在了89的线圈上,于是电流缓慢增长,增长到一定程度进入到电路饱和(因为1、有线损,2MOS管有压降),当电流不能再继续增长的时候,那么1234的感应电就没有了,只有电流能继续增长才能有感应,饱和有两种饱和(1、回路电阻饱和(电阻引起的饱和可能性不大),2、磁饱和,主要是变压器,U2是变压器(EE25型)是磁饱和),那么饱和的时候感应不到567这边来,于是就没有感应电了(没有正反馈过程),那么Q8是电流大,Q7电流小,Q8饱和导通,Q7截止的,于是它不可能变成饱和了,于是Q8进入退出饱和(从饱和进入放大状态),Q7进入放大状态(从截止进入放大状态),于是开始逆转,因为98这个回路上电流要变小,于是就感应出上负下正的电,于是开始交换。
        所以这个电路也是用了不对称性,产生一个漏磁,漏磁通过反馈回来补偿Q8Q7一个是加速饱和导通,一个是截止(自激过程);之后6伏点加在9脚之后电感上电流是不能突变的,电流缓慢斜波式增长上去,增长到一定程度之后,一般来说都是进入磁饱和,电流增长变压器磁场也在增强,磁场增强到一定程度进入磁饱和,磁场增加到顶点,于是导致567处感应的电没有信号了,于是Q8退出饱和(饱和进入放大)、Q7退出截止(截止进入放大),也就是开始逆转;那么磁场感应方向开始相反,上正下负的一个点了,电流变小之后磁场开始逆转,根据伦茨定理续流。暂稳态就是6伏电给电感充磁的过程(电流上升过程)。

5、正弦波振荡器条件
*闭环增益大于1
*反馈相位满足N*360N是大于等于0的,一般是0倍或者是1倍。
*有一个选频网络(非必须,但必要),一般用晶振来选频,因为没有选频网络的话,频率会乱跳。所以它是非必须,但是是必要的,因为我们网络当中需要一个稳定的频点。
现在正弦波振荡电路是主流用的比较多的,开关式的脉冲自激振荡电路用的非常少,因
为单片机兴起了。

相关帖子

发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

39

主题

43

帖子

5

粉丝