单片机交流采样问题
大家好 我现在做一个功能要采集漏电值 AD采过来的数据应该怎么处理呢 我现在在主循环里一直采样,取最大值和最小值,40ms也就是2个周期进行一次处理 出来的结果浮动特别大 为啥呀。 ***+weXyfpYm54lat7rWR6naP795bhhwTwyknqNScJnpI28EktnPf4c3B6BebsyfaVeU3/TbyGLTDZu6yFsevV53hpDLSEsZMpSw4tOQ7BmJPYIUNlq7Z2rzexn7bsfkyAvX61+Pdgb38L/G/xlv7jU4KnpA2wroWzlUx7nDPI9P4uzP7lhs0rYFGqrIWx63Uy5THtZMomfYuTIyexc8e3aesH9m4wm8jd+8SJd47Ze8Zze9O/nkX4SPCUtAHWc71szCzu0HbP0kqmNJacH16gtk6ml/FvrZiqobeGTop9jd5iZKoZDJKJy8onZU5iB77aYIF8Lf+cTvS3Y9PWLcbT/zRkahV1/otcnUz84yOM2FJ4xvam2kxjmfsull1ql6q3yFrIFHrPyXTAE9vswzvcWMV2W7zsve6UTUt10Ll0fq3eZecx9y1h1ZJvnUxZIm3JcZgwOYkdMlS2aeuP029EM78tkikjTW4v3wrmmND3FJ5cdqlN3A+OY1nUS0qL7P5kyu5Fd3/yQMQ67QZYV6YWW13WyTQ1ny4dF06mLClfGnwEgEVvKvmj37XSorOWbO7KlP9A/DTm5S1ewiuF5yTbJ61UmyWsY9mldql6i+z+ZEq2Tyv92R9FDFvClm1ei60u62S69/zRxFQxMk0ZJ63TGCLte61di3pzEju3vU1b5fdMaaXEn/Kd7KWfuJz/cDzHRYKnpA36nPTKEx5kLaWFTKF3cZu3uwCd/1GEdWUKnZqyFsaut3xMt4Sxk+lOK1NNEoCMJWByEjv0UWnRyfvJ/W7RS7b2/1jC75v224/8FY45CUR/D3Z/NyPZePwSPCVt0K/FXvShKZ1MPdFr4mZNpkYs19BJGGj0Opk6mareU12bdGvnNEGK/kBiRJb4CzIqOZFu/T3Y0isxsQ4cp0qMI3UurrPYG/eVc2wlU44x8B2xpT+3gA/ogSM8kBT5Ime8lra1MHa9fsHC47YYmVoCzWXlQZqT2LnjW8R4biseiJkeguH2xd+l9s519H6IZVNtYn04jmVRLyktshYy1erVyhEWLiuf80fCqiVbnUx3WpnWcnpOYucJvNZ4LXrTttJDMf0v72AFxe3Ed6nelI5YNtUGeuIylo3Prx3nyv7r3/8J9KE+iUz58Zqe+FyuXshr5UjeZZ1MEUe8bCkunEydTLO3eWsFeA6J8QmZk6xTOmJ7U21ifTiOZVEvKXNlOXk6mcrIKRdj7jeXlWFMmGmx0spZdGpli5EpD7rc7xYAc3Xx9i3qzUnsR7WV7Jb6VoKnpA2wlupF+71Kyzavdgy1bHW9clLT+pbkauBcQ6fW1pFMadD4AHAco0Q9lJWqR78oXW/vmxQOlNgv/zlV0NnbSTGRwmGrHucRUzhGX6iXYon2S/2gnpeQgU4qUYd2OGetpwezSvafGie3wTr+VP+oi+1yvcv5gWMT47aE51I97+uS/l0az9dWP5IpHxi+c/BQd4nS9Za/0rRgbFn1WPRaYs+itxV759u8r9T3TLU4WzDW6iQ511s+X9TCuSXfFiNTCwguK58cWqy0cjSp6pDLY3j9DH/xxcql34LtXteY3kft7cUTwCTPngLGqx3oC8enV907qaO9Ub2EACw458ruRaa5eoGDVs6aqF1v+XxRy0ct+dbJtPEHkLTBppWjSTWSC8MOCXWrtOh9evocbp/3BAc93buPiV80ovdJr6+mtpPe/ulf/utI1Ne7q4Fc6Z9mQKrDv8509ibq+V+6YTxxOemVJzz0YZHFNi/6yim1erVyNDaXlcfHkbBqyVYnU0YILTkOyVE7Zq0c6f2ayDRwkht9OfxkIK0kB6Ll9s5/IYmS2GO4vel/YjA+1/9Qwens78ioPiZk+ISXXC+vl3y3yDqZysjJgrHLyjCmWNdipZWz6NTKFiNTSbJYamMBcKlPSf2R9FpsrUWm+HcYTmLJlenD+3B7TxN9+mH2mb3DinNcWY7tz//Ds/+ln/86I9OYdJfia6Z3JHt5Elrqd6veQqZbfS+dr2Wr6y0fT+TzGjjX0Km11cmUJbiWHLeU0KT1FltrkykRxfhJbPF+uXkfQJRYQc7t7e+dgpR5+9DdF53utfYr0/8Kqfq1H4mAH+Z6L5P0SLeTaXmsa/n2SHpbstXJ1Ml09qoJSGCtrE2mIEEaY092E/lh9TqSLRHv1afzq2oize7eaP9D+Nzevk8QNv0O8KnDKK6/fdhO2LWSgZPptm+4zzXfa/n2SHpbsrUYmVpAcFl5ItBipZWjpANyuXQCSj2A1N0z5U/msi3bfny0Cn0TXn+cv5/abwG/Cbc378MiKdJ28NWnc3uHeon9FpwtshYy1erVyhGOLlt+zreIc0tx4WS608q0JadbJ9XXRKbxynS2ZTv4lu5vpv64ursfiid3WRx0JMm2e2f2svquXSwXHdeKCydTGTnV8o/r/fb842TKkt+RAtxi64xcGH5lyWXhPdPhXdDZ9i4nyO5ho2HLltfTuB/eh+ubx/k2d0eWr4Yt4H7Cd/Ym6svaa1utOZl+e8ka8WaZu63JtjTeYmQKx2tKC4AafZA5kl6LrXXIVJYc4cu4PJq9FjKNsZMeWzCW6ki1c722uZHCNFVXA+caOsl2jV4nU7ay0gCYCrrcuhp6c3XOf13n8n/vlYtp3D7XXi7f4sWDk2l5grHEFI+v3O9H0tuSrU6mTqbzbU6GB5/kTqa65FwrGTiZ6vzFY37rey3fHklvS7YWI1MLCC4rTwRarLRylGBqrdQsY7bItmivhUy1WGnlKKZctvycbxHnluLiRIP1j2OQEwOUqHPat96WyLQ1G47mo9b84+P99nKur0zZtiYF+NbWztL51mRzxzvf5tX/vVeuXo53LVlfmcpWTbX843pl/vGVaVmcipEpT4K53y2TI1cXb38kvbm2fg1kyn2V+z3XXt5/LTLlY8j9btnmzdWF9haM0YemdL1yktDgC5kaONfQSfZq9DqZ7rQyRcBpSo3jNHq4jEWnJVFb9PLx53636HUylSVrC8a5/uTtXa/MPxwzzfcaONfQSdho9DqZOplmb207mcqTl2ZSahJdLGPxUdyX9LiWra5XHo9SX6ba1cC5hk6yXaO3GJlqBgMHuqx8cmix0sqRjyyJ2qK3lmytlanF3ho+sozXZcvPeS1J1MzLLcWFk+lOK9OWnG6dVDUStXXMFv84mcoSvQVjl5VhXHMe1PBRDZ1ajJ1MnUyb2eatNbGcTGWJvpZ/XK/MP1qSILlasi35thiZwgGa0gKgRh9kjqTXYmutlSn8pClt9vb/Z3ppvRp9kLH4CH3klhaMc3Xx9q5XTqYct9zvNXCuoZNw0eh1Mt1pZZobmLy9xnFcXvPdotOSqC16NXZCxqK31soUY9eUFh9p9JGMBWOtTtd7GSKthXNLMeVk6mTazDZvrYTrZCpL2C0lPkssQdbtlcUF8NKULWFcjEwtILisPEi1WGnlaEJYVj0WvbVka5Gpxd4aPrKM12XLz3mau63h3NJ4nUx3Wpm25HTLpKIkXSNRW8askcUvPsFeHFNfOZ8acYEx54yTt9WOWStHul12Pa54/BFW/Jj7but7azi3NF4nU5YcW3IcJo12zBo5JGmUGENOqdGL/i8pS8kKdqKkOoxFWl5yzDQmjBWldJy8nXbMWjnS7bJOpjwG8b2luChGpgBDU1oA1OiDzJH05tqK5ByXwE5a5uqV9rvVLldvbCeOt/TE53P1xvI5xxhjXOb0YWl7SVv5OF3vOhFzrCzfa+BcQydhpNE7kikJ4wPAcYwS9VC2VR9Paj/ut0gdB8fBY8BjwBIDyMXIwVSiTpqfc9tzHZfUmzvOWu1HMuUDwHcOHuouUbre8leaGozjya+JBY1ejZ5YJlfv17DNG9sgOd7DRxI9qTa5GKf60NQdQS+/R/rqdFLfM9XgC5kaONfQSfZq9BYjU81g9nCa65URsRYnJGv4KrfU6tUGOMaXqxfJC/biGP1Jy1y9vF+tLMbM+8r5rtWrlaOxuez6vOXxZyHT1nBuabxOpv4A0mx7SJJ0Wwpw2ONjXk/WwMlCbI5xeYzJP0Sm3F8531vzUUvjdTJ1Ms2emC0FOBKNj7l8oneMy2PsZHoZjDWxXIxMkcQ0pcYQjZ5Y5kh6j2Qr+dntlSeheF5Ijx3j8hiTLywrU6kvU+1q+LeGTrJdo9fJdKeVaSr4pHUax0n7XmpXQyeNxfVeJuHWwLmGziPGlJNp+TmkiWUnUyfT7G3eJYKW1GuCVNLvVhvX+3UmoC2/Sc4fzbdOpl9nLBcjU0uAu6w8WLRYaeUoublsef+0iLPHxWXiwkKmrfmopfE6me60Mm3J6S0mah+zPFHXwqq1OVALJ6teJ1PZXLh0PDqZOplmb/NeOkgp+VgTkI9ZloAsODvG5TEm/ziZynC+dDwWI1MkQE1pAUGjDzJH0nskW8m/bq8sAWEuaErHuDzG5BcLmWr8Cpka/q2hk+zV6HUy3WllioDTlBrHafRwmRo6Sb/rvUzCrYFzDZ1HjCkn0/JzSBPLTqZOptnbvJyUc79rgjRXR6q96/06E1DKV7l1R/Otk+nXGcvFyNQS4C4rDxYtVlo5SnQuW94/LeLscXGZuLCQaWs+amm8JxqsfxwDjwGPAY+By8UAEWKtj/u5jJ99ZbrTNi8FaO72FNrXkK2hs8XVlo/5MqutI8ajdoWpxYr0aWVrzYOWxluMTEEUmtICoEYfZI6k90i2kn/dXjkpYj7klo5xPsYaQtXgrNET+1+jN+4j97iGThqjRq+T6U4r09wg4e01juPymu81dNI4XW9+wm3Fv+5bnW9ziS4X59z+l+ItV+9SPzn1NXTS+DR6nUydTNXb0zmTAm01QQpZS+l6dYk+B3PHWI9xDuHl4JzT75avc/Ru9SU9X0MnjU2jtxiZagYDgF1WPim1WGnltIHmvpX7tFWsPKbkPk5hJSW+lCxihpep/qSyvB98ryFbQyfZq9HrZLrTylQDvgepPPloA7wmxkcbc2tz4Gv0T4oAEcMoJTgv9SORhZ64rCFbQyfZrdHrZOpkmr3Nqwk0TEyXlV9AtIZVa+PVJs3SsbxEhFK9a/Kt+ail8RYjUzheU1oA1OiDzJH0HslW8q/bKydxzIfc0jHeD2MtIa7J5fozbl/DvzV0kt0avU6mO61M48DLOdY4Lqf/VNsaOmkcrne/hJvyK+pq4FxD57ccU0vEuITzUnvEhLVc0mvtd02+hk4aj0avk6mTafY271rwb53TBOlWn5Lzrrc8iTvG+2OcIsgUzql2knmR0yalN0de07aGThqnRm8xMtUMBmC7rHxSarHSymkDzX0r92mrWHlMyX2cg1VMlLFsfB7xkypj2VSbpboasjV0kv0avU6mO61MNeAjaGvI1tCpDdKaOPmYyxAEfIrS43EdZ06YHCteDyzXSi671i51roZsDZ1ku0avk6mTafY2rybQMDlddj1pAifthIZ8DZxr6GwRJ+2YQZzAGcfwuaSErKRt3KaGbA2dZLdGbzEyjR2Rc6wxJKf/pbZH0nskW8nfbq+cxJfmx1a9Y1weYyJQwllDpFv+2zpfw781dBIOGr0jmZIwPgAVxyhRD2Wl6tEvStfb+2ZPHAjb0n5M9e965/8uhBgHLvCxtR79WfvJGQ90pvye0w/aSvtxvfvnB/iAx08tnDEWaTzUaj+SKR8AvnPwUHeJ0vWWv8J1jMtjTHPlSDgfydaj+baWvS3FVDEytYDgsvJEr8VKK2edVK63vG9r+ch9++361mNq27dOpv4Akj+AxGKAkkb8cZI4xyTGqFaydb0y38BfrcVyS+N1MmXJsyXHWSfHkWz1hHuZhOsxJcfZsZJh1RJOxcgUyV5TWgDU6IPMkfQeyVbyr9srS16YC5rSMS6P8dFiuaWYcjLdaWWqST6QqREwNXQeLREczV6PKSdT5LS9ypZiysnUyfTsHuFeEyHVT0uTIzX+3Loj2XskWykO3N7yFw8tYVyMTC0guKw8SLVYaeWsScT1lvdtLR+5b79d33pMbfvWyXSnlWlriaS18daazK53O4kQRo6THCfHSo5VS3nKydTJNHubt6UA90QvT1xWrDwu5Fg7VjKsWsKpGJliYmpKC4AafZA5kt4j2Ur+dXtlyQtzQVM6xuUxPlostxRTTqY7rUw1yQcyNQKmhs6jJYKj2esx5WSKnLZX2VJMOZk6mWZv81omSkuTw2InZI9k75FsJf+6veUvHlrCuBiZWkBwWXmQarHSylmTiOst79taPnLffru+9Zja9u2JJoB/HAOPAY8BjwGPAY8BfQz4ynSnbV4KQrp603xqyNbQWevq1vXmxaU2NrRy7p/L+KdFnFuKqWJkSo7TfiwAanVaA601vY6xPj5zfH0knI9k69HyRS17W4opJ1NG+i05Liehp9oeydZaieBoej2m/AItlWssdS3FlJOpk6l6B0EzSVqaHBr7Ypkj2XskW8nPbm/5i4eWMC5GphYQXFYepFqstHLWJOJ6y/u2lo/ct9+ubz2mtn3rZLrTyrS1RNLaeGtNZte7nUQII8dJjpNjJceqpTzlZOpkmr3N21KAe6KXJy4rVh4XcqwdKxlWLeFUjEwxMTWlBUCNPsgcSe+RbCX/ur2y5IW5oCkd4/IYHy2WW4opJ9OdVqaa5AOZGgFTQ+fREsHR7PWYcjJFTturbCmmnEydTLO3eS0TpaXJYbETskey90i2kn/d3vIXDy1h/P8Btns6/rm5eWwAAAAASUVORK5CYII= 本帖最后由 ningling_21 于 2021-10-27 10:54 编辑交流信号本来就是幅度随时间变化的信号,不过有的交流信号周期性,需连续采样一个周期再进行处理,如果幅度不够还要加运放把信号放大到合适采样的范围 什么样的信号?采样率多少?采集后的数据准备用来干啥? 单片机采样不是随便设置采样时刻的,要根据你需要设置采样时刻,如果你在大循环里面随便采,数值当然就是乱的 单片机交流采样,最好是使用ADC-DMA运用,持续采样一周期的信号,这样才能采集到比较准确的数据 如果交流波形是固定不变的,只是振幅不同,那么可以使用周期内采集足够数量的点 ,通过计算应该是可以获得,有效值的,还是建议是用模拟电路进行解决。如果对成本没有要求,比如AD637,可以比较简单的解决这个问题 这种情况,应该使用DMA连续采样,再分析波形。采样周期要足够小。 其实我采样很小了,在WHILE循环里采 没有什么其他时长多的任务感觉是硬件问题
单片机交流采样问题
既然是交流电,就需要在一个周期采样10次以上,为什么是40而不是4 ms呢?搜索复制
另外,一周采样10次选出你需要的数据:例如最大、最小等,然后也可以计算有效值。
我是1ms定时器中断里采集,取一定时间内的极值,只要输入RC滤波,结果还是很稳定的 如果单片机运算能力不错,可以一周期采样40次以上,再进行均方根运算。
单片机交流采样问题
我也不知道 采样率太低,而且信号的包络变化周期是多少呢?单片机交流采样问题
学习了单片机交流采样问题
对于交流采样首先是分析你的交流是多少Hz的,然后确定你的采样率。举个栗子:50Hz的交流电压,周期是20ms,为了满足我的采样需求,我定一个周期内采集500个点,那么我的采样率为:25kHz。知道了这个以后,然后计算交流量的有效值,也就是我们平时所说的均方根。
页:
[1]