(分享)STM32无刷电调全套开发资料(源码、原理图、PCB工...
本帖最后由 两只袜子 于 2022-4-19 10:17 编辑SC32硬件---PCB小结(第一版)Altium Designer画的原理图和PCB图如下:
经过一个星期的画PCB,今天终于化了,整体看上去还比较满意,具体的性能还得等后期制板、测试才知道。这个电路属于低频功率型板,相对高频板信号质量就要求不高了,所以也就不用考虑信号完整性等问题了。 等完成原理图的设计之后,我就请教了好几个人,在布线的时候需要注意的事项,但是没有得到什么有价值的答案,原因是他们不了解我,只是站在自己的去看待这件事了,所以对于他们就没什么难度了。 在原理图的设计时,参照了“阿嘉”和“六哥”的方案,大体没有太大的改动(六哥的已经商品化,相对有保证),只是完善了自己的接口和一些器件的选型。对于原理图的分析请看前两篇博客,有什么不对的地方欢迎指出。 原理图设计完成之后,接下来就是为各个器件添加封装了。这个过程我检查的还是比较仔细的,因为上次已经在这里出现过一次问题了。对于电阻,电容的封装大体选用0603,对于个别选用0805。对于重要的器件,参考了数据手册和IPC-7351进行选择,应该不会有问题。 接下来就是导入网表,开始布局。相对来说这个比较简单所以布局也就比较随意,基本原则就是按照功能模块进行布局的。在布线的时候我更比较随意了,也不想什么规则。当布到一半的时候,好多走线都无法完成了,连打过孔的机会都不给我了。我想肯定是出问题了,应该是布局的问题,大概看这个图看了一天,光看不画,看看哪里出问题了。于是就开始了第二版,有了第一次的不顺利,第二次自然就顺利了很多。大概用了不到一个星期就画完了,这个图我自己看上去很是满意。 前面这些跟流水账似的,没有什么实质性的意思。 在画之前我就找好了人帮我检查这个图了,周五我把图发给我了相思谷(一个网友),把帮我之处了很多问题,下面就总结一下问题。
1、线间距。 这里应该遵循3W规则,所谓3W就是为了减少线间串扰,应保证线间距足够大,当线中心不少于3倍线宽,则可 保持70%的电场不互相干扰。如要达到98%的电场不互相干扰,可使用10W的间距。——这是查阅华为PCB布线规则所得。 这里我就没有遵循这个原则,我的线间距大概只有1倍线宽。 2、电源线过细。 这里我查阅了华为PCB教程得到了下面一个表格。这里线宽跟所能承受最大电流的关系表 3、电源环路。(用图说明)
高亮部分的GND形成了一个环路而且是一个严重的闭环。在看看VS电源线环路
这是VS电源线没有闭环,但是接近闭环了。
这里我就困惑了,如果整体敷铜接地,那在敷铜层也是闭环的GND,而且整体敷铜可增强抗干扰的能力。这个问题“相思谷”没有给我解答清楚。他让我查阅一下资料,我查阅了很多资料最终未果。于是翻看自己的QQ好友看看谁能帮助我,看后傻了,全是软件的,硬件方面的就有猫大,还没在线。这时候突然想起了流星赶月了,这是个大神。于是就翻看猫大的群就找他了,还不错这人挺热心。下面就看看他的问题吧。 电源环路没有问题,主要是低阻抗,电调的板子电流很多,不敷铜不合适。他又指出控制部分形成环路确实不好,线上分布电感明显,应该尽量保证单面敷铜连续,就是尽量保证不出现死铜。我的电源环路最要是走线环路,没有平面,是阻抗。
1、线间距。 这里应该遵循3W规则,所谓3W就是为了减少线间串扰,应保证线间距足够大,当线中心不少于3倍线宽,则可 保持70%的电场不互相干扰。如要达到98%的电场不互相干扰,可使用10W的间距。——这是查阅华为PCB布线规则所得。 这里我就没有遵循这个原则,我的线间距大概只有1倍线宽。 2、电源线过细。 这里我查阅了华为PCB教程得到了下面一个表格。这里线宽跟所能承受最大电流的关系表 3、电源环路。(用图说明)
高亮部分的GND形成了一个环路而且是一个严重的闭环。在看看VS电源线环路
这是VS电源线没有闭环,但是接近闭环了。
这里我就困惑了,如果整体敷铜接地,那在敷铜层也是闭环的GND,而且整体敷铜可增强抗干扰的能力。这个问题“相思谷”没有给我解答清楚。他让我查阅一下资料,我查阅了很多资料最终未果。于是翻看自己的QQ好友看看谁能帮助我,看后傻了,全是软件的,硬件方面的就有猫大,还没在线。这时候突然想起了流星赶月了,这是个大神。于是就翻看猫大的群就找他了,还不错这人挺热心。下面就看看他的问题吧。 电源环路没有问题,主要是低阻抗,电调的板子电流很多,不敷铜不合适。他又指出控制部分形成环路确实不好,线上分布电感明显,应该尽量保证单面敷铜连续,就是尽量保证不出现死铜。我的电源环路最要是走线环路,没有平面,是阻抗。
听完他说的我还没懂,只是迷迷糊糊有个印象。在继续深问就会显得自己弱智了,我也含糊的问答了一下,想不太明白,我在看看。这个原因剩下的就是继续查资料吧。 在《电路设计技术与技巧》这本书中写到:“地回路”会孕育一个低频的电磁干扰。磁场在一个环形的、封闭的电路中,感应出一个感应电流。还有导线的低频等效模型是一个电阻,由于高阻抗的作用,各个GND值就有会有压差,而不是一个值了。这里指出了一个规则:永远采用分社的电源地线,用不同的导线来分别承载由每个电源所提供的电源。如图: 与使用分开的地线的原因相同:使用一条公用的电源供给线,会在电源电压上形成一个公共的串联电压降,只是这里被加入到了电源供给线上。 我还问了他布线的技巧,让他给我推荐一些资料。这个问题他给我的为回答是:整体铺地,单点接地。双层板要调整元件布局,使各个元件接地路劲最短,且地平面集中。泛泛看资料作用不大,很难推荐,布线技巧不是靠临时看书就可以解决的,需要实际操练。 他的回答很简单,但是很受用,解决了我好多困惑。 这些就是针对相思谷提出问题的理论补充了,看起来问题很是蛮多的,于是决定重新布局再画一版。针对这次画板,我打算请多个人检查,初步打算有相思谷,华航申老师,猫大、流星。第一版的相思谷已经初验了,还有工程已经发给申老师了还没给我回复呢。第二版再去找猫大跟流星,针对他们提出的问题进行总结,然后修改。最后在拿去找老师检查。估计周一申老师就会检查完,到时候在把他提出的问题进行总结。
总结:上面检查的方式太局限了,但这是非常有效的方法。通过他们的检查我可以充分补充理论知识,而且这些人尤其是猫大跟流星在硬件方面的造诣很深。结识他们就相当找到了一个柱子,顺着他们向上爬吧。这种方法是我看于争的视频想到的方法。他们的经验转换化自己的经验,相信通过这两天电路板肯定帮我在低频电路设计提升一个层次。同时在跟他们的交流过程中发现了一个问题,猫大跟流星的理论基础太厚了,他们很说空经验,他们的经验全是有理论支撑的。这个正好符合了于争视频的快速积累经验的理论。
[*]/*
[*] This file is part of AutoQuad ESC32.
[*]
[*] AutoQuad ESC32 is free software: you can redistribute it and/or modify
[*] it under the terms of the GNU General Public License as published by
[*] the Free Software Foundation, either version 3 of the License, or
[*] (at your option) any later version.
[*]
[*] AutoQuad ESC32 is distributed in the hope that it will be useful,
[*] but WITHOUT ANY WARRANTY; without even the implied warranty of
[*] MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
[*] GNU General Public License for more details.
[*] You should have received a copy of the GNU General Public License
[*] along with AutoQuad ESC32.If not, see
[*]
[*] Copyright © 2011, 2012, 2013Bill Nesbitt
[*]*/
[*]
[*]#include "run.h"
[*]#include "main.h"
[*]#include "timer.h"
[*]#include "adc.h"
[*]#include "fet.h"
[*]#include "pwm.h"
[*]#include "cli.h"
[*]#include "binary.h"
[*]#include "config.h"
[*]#include "misc.h"
[*]#include "stm32f10x_exti.h"
[*]#include "stm32f10x_pwr.h"
[*]#include "stm32f10x_iwdg.h"
[*]#include "stm32f10x_dbgmcu.h"
[*]#include <math.h>
[*]
[*]uint32_t runMilis; //systick中断中自加.没有什么控制用途
[*]static uint32_t oldIdleCounter;//上次main函数中,死循环次数.
[*]float idlePercent; //空闲时间百分比(在main循环里,什么事情也不做.main死循环运行的时间)
[*]float avgAmps, maxAmps; //平均电流, 最大电流
[*]float avgVolts; //当前ADC采集转换后的电池电压(也就是12v)
[*]
[*]float rpm; //当前转速(1分钟多少转) 测量值 在runRpm函数中计算出来.在runThrotLim中还要继续使用.
[*]float targetRpm; //目标转速 设定值(只在闭环 或 闭环推力模式下使用此变量)
[*]
[*]static float rpmI;
[*]static float runRPMFactor;
[*]static float maxCurrentSQRT;//最大电流 平方根 后
[*]uint8_t disarmReason;//此变量没啥作用.只用于给上位机显示当前的 调试代码(或者说停止电机的原因)
[*]uint8_t commandMode; //串口通讯的模式, cli是ascii模式, binary是二进制通讯模式
[*]static uint8_t runArmCount;
[*]volatile uint8_t runMode;//运行模式 (开环模式, RPM模式, 推力模式, 伺服模式)
[*]static float maxThrust;
[*]
[*]//执行看门狗喂狗
[*]void runFeedIWDG(void) {
[*]#ifdef RUN_ENABLE_IWDG
[*] IWDG_ReloadCounter();
[*]#endif
[*]}
[*]
[*]// setup the hardware independent watchdog
[*]// 初始化并开启独立看门狗
[*]uint16_t runIWDGInit(int ms)
[*]{
[*]#ifndef RUN_ENABLE_IWDG
[*] return 0;
[*]#else
[*] uint16_t prevReloadVal;
[*] int reloadVal;
[*]
[*] IWDG_ReloadCounter();//喂狗
[*]
[*] DBGMCU_Config(DBGMCU_IWDG_STOP, ENABLE);//当在jtag调试的时候.停止看门狗
[*]
[*] // IWDG timeout equal to 10 ms (the timeout may varies due to LSI frequency dispersion)
[*] // Enable write access to IWDG_PR and IWDG_RLR registers
[*] IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);//允许访问IWDG_PR和IWDG_RLR寄存器
[*]
[*] // IWDG counter clock: LSI/4
[*] IWDG_SetPrescaler(IWDG_Prescaler_4);
[*]
[*] // Set counter reload value to obtain 10ms IWDG TimeOut.
[*] //Counter Reload Value = 10ms/IWDG counter clock period
[*] // = 10ms / (RUN_LSI_FREQ/4)
[*] // = 0.01s / (RUN_LSI_FREQ/4)
[*] // = RUN_LSI_FREQ/(4 * 100)
[*] // = RUN_LSI_FREQ/400
[*] reloadVal = RUN_LSI_FREQ*ms/4000;
[*]
[*] if (reloadVal < 1)
[*] reloadVal = 1;
[*] else if (reloadVal > 0xfff)
[*] reloadVal = 0xfff;
[*]
[*] prevReloadVal = IWDG->RLR;
[*]
[*] IWDG_SetReload(reloadVal);
[*]
[*] // Reload IWDG counter
[*] IWDG_ReloadCounter();
[*]
[*] // Enable IWDG (the LSI oscillator will be enabled by hardware)
[*] IWDG_Enable();
[*]
[*] return (prevReloadVal*4000/RUN_LSI_FREQ);
[*]#endif
[*]}
[*]
[*]//esc32 非正常停止运行 进入初始化
[*]void runDisarm(int reason) {
[*] fetSetDutyCycle(0);//fet占空比设置为0
[*]
[*] timerCancelAlarm2();
[*] state = ESC_STATE_DISARMED;
[*] pwmIsrAllOn();
[*]
[*] digitalHi(statusLed); // turn off
[*] digitalLo(errorLed); // turn on
[*] disarmReason = reason;// 设置停机原因.给上位机查看状态使用
[*]}
[*]
[*]//手动运行
[*]void runArm(void) {
[*] int i;
[*]
[*] fetSetDutyCycle(0);
[*] timerCancelAlarm2();
[*] digitalHi(errorLed);
[*] digitalLo(statusLed); // turn on
[*]
[*] if (runMode == SERVO_MODE) {
[*] state = ESC_STATE_RUNNING;
[*] }
[*] else {
[*] state = ESC_STATE_STOPPED;
[*] if (inputMode == ESC_INPUT_UART)
[*] runMode = OPEN_LOOP;
[*] fetSetBraking(0);
[*] }
[*]
[*] // extra beeps signifying run mode
[*] for (i = 0; i < runMode + 1; i++) {
[*] fetBeep(250, 600);
[*] timerDelay(10000);
[*] }
[*]
[*]// fetBeep(150, 800);
[*]}
[*]
[*]//电机开始运行
[*]void runStart(void) {
[*] // reset integral bevore new motor startup
[*] runRpmPIDReset();//先复位I值
[*]
[*] if ((p == 0) && (p == 0)) {
[*] state = ESC_STATE_STARTING;//设置为准备启动状态
[*] fetStartCommutation(0);//换向启动
[*] }
[*] else {
[*] motorStartSeqInit();//普通启动
[*] }
[*]}
[*]
[*]//电机停止运行
[*]void runStop(void) {
[*] runMode = OPEN_LOOP;
[*] fetSetDutyCycle(0);
[*]}
[*]
[*]//设置运行的占空比 duty = 0~100
[*]uint8_t runDuty(float duty) {
[*] uint8_t ret = 0;
[*]
[*] if (duty >= 0.0f || duty <= 100.0f) {
[*] runMode = OPEN_LOOP;
[*] fetSetBraking(0);
[*] fetSetDutyCycle((uint16_t)(fetPeriod*duty*0.01f));//最大周期 * 占空比(0~100) / 100
[*] ret = 1;
[*] }
[*]
[*] return ret;
[*]}
[*]
[*]//pwm.c中断中调用或串口命令输入调用
[*]void runNewInput(uint16_t setpoint) {
[*] static uint16_t lastPwm;
[*] static float filteredSetpoint = 0;
[*]
[*] // Lowpass Input if configured
[*] // TODO: Make lowpass independent from pwm update rate
[*] if (p) {
[*] filteredSetpoint = (p * filteredSetpoint + (float)setpoint) / (1.0f + p);
[*] setpoint = filteredSetpoint;
[*] }
[*]
[*] if (state == ESC_STATE_RUNNING && setpoint != lastPwm)
[*] {
[*] if (runMode == OPEN_LOOP)
[*] {
[*] //开环模式
[*] fetSetDutyCycle(fetPeriod * (int32_t)(setpoint-pwmLoValue) / (int32_t)(pwmHiValue - pwmLoValue));
[*] }
[*] else if (runMode == CLOSED_LOOP_RPM)
[*] {
[*] //闭环转速模式
[*] float target = p * (setpoint-pwmLoValue) / (pwmHiValue - pwmLoValue);
[*]
[*] // limit to configured maximum
[*] targetRpm = (target > p) ? p : target;
[*] }
[*] // THRUST Mode
[*] else if (runMode == CLOSED_LOOP_THRUST)
[*] {
[*] //闭环推力模式
[*] float targetThrust;// desired trust
[*] float target; // target(rpm)
[*]
[*] // Calculate targetThrust based on input and MAX_THRUST
[*] targetThrust = maxThrust * (setpoint-pwmLoValue) / (pwmHiValue - pwmLoValue);
[*]
[*] // Workaraound: Negative targetThrust will screw up sqrtf() and create MAX_RPM on throttle min. Dangerous!
[*] if (targetThrust > 0.0f) {
[*] // Calculate target(rpm) based on targetThrust
[*] target = ((sqrtf(p * p + 4.0f * p * targetThrust) - p ) / ( 2.0f * p ));
[*] }
[*] // targetThrust is negative (pwm_in < pwmLoValue)
[*] else {
[*] target = 0.0f;
[*] }
[*]
[*] // upper limit for targetRpm is configured maximum PWM_RPM_SCALE (which is MAX_RPM)
[*] targetRpm = (target > p) ? p : target;
[*] }
[*] else if (runMode == SERVO_MODE)
[*] {
[*] //伺服模式下
[*] fetSetAngleFromPwm(setpoint);
[*] }
[*]
[*] lastPwm = setpoint;
[*] }
[*] else if ((state == ESC_STATE_NOCOMM || state == ESC_STATE_STARTING) && setpoint <= pwmLoValue)
[*] {
[*] fetSetDutyCycle(0);
[*] state = ESC_STATE_RUNNING;
[*] }
[*] else if (state == ESC_STATE_DISARMED && setpoint > pwmMinValue && setpoint <= pwmLoValue)
[*] {
[*] runArmCount++;
[*] if (runArmCount > RUN_ARM_COUNT)
[*] runArm();
[*] }
[*] else {
[*] runArmCount = 0;
[*] }
[*]
[*] if (state == ESC_STATE_STOPPED && setpoint >= pwmMinStart) {
[*] //电机开始运行
[*] runStart();
[*] }
[*]}
[*]
[*]//电调运行看门狗. 主要是判断电调的当前一些状态.做出停机等处理
[*]static void runWatchDog(void)
[*]{
[*] register uint32_t t, d, p;
[*]
[*] //__asm volatile ("cpsid i");
[*] //CPSID_I();
[*] __disable_irq();
[*] t = timerMicros; //当前的系统tick时间
[*] d = detectedCrossing;
[*] p = pwmValidMicros; //在PWM输入模式下.把timerMicros的时间赋值给此变量
[*] //__asm volatile ("cpsie i");
[*] //CPSIE_I();
[*] __enable_irq();
[*]
[*] if (state == ESC_STATE_STARTING && fetGoodDetects > fetStartDetects) //这里要检测到fetStartDetects好的检测,才允许切换电机状态
[*] {
[*] //是启动状态.切换到 运行状态
[*] state = ESC_STATE_RUNNING;
[*] digitalHi(statusLed); // turn off
[*] }
[*] else if (state >= ESC_STATE_STOPPED)
[*] {
[*] //运行模式状态下.会一直在这里检测状态.如果状态不对出错.会调用runDisarm函数停止
[*]
[*] // running or starting
[*] d = (t >= d) ? (t - d) : (TIMER_MASK - d + t);
[*]
[*] // timeout if PWM signal disappears
[*] if (inputMode == ESC_INPUT_PWM)
[*] {
[*] //PWM模式 判断PWM输入是否超时
[*] p = (t >= p) ? (t - p) : (TIMER_MASK - p + t);
[*]
[*] if (p > PWM_TIMEOUT)
[*] runDisarm(REASON_PWM_TIMEOUT);//pwm输入超时
[*] }
[*]
[*] if (state >= ESC_STATE_STARTING && d > ADC_CROSSING_TIMEOUT)
[*] {
[*] if (fetDutyCycle > 0) {
[*] runDisarm(REASON_CROSSING_TIMEOUT);//错误停止
[*] }
[*] else
[*] {
[*] runArm();//手动运行起来
[*] pwmIsrRunOn();//PWM开启输入比较
[*] }
[*] }
[*] else if (state >= ESC_STATE_STARTING && fetBadDetects > fetDisarmDetects)//运行状态中检测到错误的个数后.进入这个判断
[*] {
[*] //在运行过程中,出现错误.停止运行
[*] if (fetDutyCycle > 0)
[*] runDisarm(REASON_BAD_DETECTS);//错误停止
[*] }
[*] else if (state == ESC_STATE_STOPPED)
[*] {
[*] //停止模式
[*] adcAmpsOffset = adcAvgAmps; // record current amperage offset
[*] }
[*] }
[*] else if (state == ESC_STATE_DISARMED && !(runMilis % 100))
[*] {
[*] //停止模式下
[*] adcAmpsOffset = adcAvgAmps; // record current amperage offset
[*] digitalTogg(errorLed);
[*] }
[*]}
[*]
[*]void runRpmPIDReset(void) {
[*] rpmI = 0.0f;
[*]}
[*]
[*]//这个应该是计算PID
[*]//rpm:测量的转速值
[*]//target:目标的转速值
[*]static int32_t runRpmPID(float rpm, float target) {
[*] float error;
[*] float ff, rpmP;
[*] float iTerm = rpmI;
[*] float output;
[*]
[*] // feed forward
[*] ff = ((target*target* p + target*p) / avgVolts) * fetPeriod;
[*]
[*] error = (target - rpm);//计算出偏差
[*]
[*] if (error > 1000.0f)
[*] error = 1000.0f;
[*]
[*] if (error > 0.0f) {
[*] rpmP = error * p;//P
[*] rpmI += error * p; //I
[*] }
[*] else {
[*] rpmP =error * p * p;
[*] rpmI += error * p * p;
[*] }
[*]
[*] if (fetBrakingEnabled)
[*] {
[*] //开启了制动模式
[*] if (rpm < 300.0f) {
[*] fetSetBraking(0);
[*] }
[*] else if (error <= -100.0f) {
[*] fetSetBraking(1);
[*] }
[*] else if (fetBraking && error > -25.0f){
[*] fetSetBraking(0);
[*] }
[*] }
[*]
[*] output = ff + (rpmP + rpmI) * (1.0f / 1500.0f) * fetPeriod;
[*]
[*] // don't allow integral to continue to rise if at max output
[*] if (output >= fetPeriod)
[*] rpmI = iTerm;
[*]
[*] return output;
[*]}
[*]
[*]//计算出电机转速,根据当前转速计算出PID输出值,设置占空比
[*]static uint8_t runRpm(void)
[*]{
[*] if (state > ESC_STATE_STARTING)
[*] {
[*] //电机处于运行状态 计算出当前转速rpm
[*] // rpm = rpm * 0.90f + (runRPMFactor / (float)crossingPeriod) * 0.10f;
[*] // rpm -= (rpm - (runRPMFactor / (float)crossingPeriod)) * 0.25f;
[*] // rpm = (rpm + (runRPMFactor / (float)crossingPeriod)) * 0.5f;
[*] // rpm = (rpm + ((32768.0f * runRPMFactor) / (float)adcCrossingPeriod)) * 0.5f; // increased resolution, fixed filter here
[*] rpm = p * rpm + ((32768.0f * runRPMFactor) / (float)adcCrossingPeriod) * (1.0f - p); // increased resolution, variable filter here
[*]
[*] // run closed loop control
[*] if (runMode == CLOSED_LOOP_RPM)
[*] {
[*] //运行在闭环模式下
[*] fetSetDutyCycle(runRpmPID(rpm, targetRpm));
[*] return 1;
[*] }
[*] // run closed loop control also for THRUST mode
[*] else if (runMode == CLOSED_LOOP_THRUST)
[*] {
[*] //运行在闭环推力模式
[*] fetSetDutyCycle(runRpmPID(rpm, targetRpm));
[*] return 1;
[*] }
[*] else
[*] {
[*] return 0;
[*] }
[*] }
[*] else
[*] {
[*] //电机在停止状态下
[*] rpm = 0.0f;
[*] return 0;
[*] }
[*]}
[*]
[*]static void runSetupPVD(void) {
[*] EXTI_InitTypeDef EXTI_InitStructure;
[*] NVIC_InitTypeDef NVIC_InitStructure;
[*]
[*] // Configure EXTI Line16(PVD Output) to generate an interrupt on rising and falling edges
[*] EXTI_ClearITPendingBit(EXTI_Line16);
[*] EXTI_InitStructure.EXTI_Line = EXTI_Line16;
[*] EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
[*] EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
[*] EXTI_InitStructure.EXTI_LineCmd = ENABLE;
[*] EXTI_Init(&EXTI_InitStructure);
[*]
[*] // Enable the PVD Interrupt
[*] NVIC_InitStructure.NVIC_IRQChannel = PVD_IRQn;
[*] NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
[*] NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
[*] NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
[*] NVIC_Init(&NVIC_InitStructure);
[*]
[*] // Configure the PVD Level to 2.2V
[*] PWR_PVDLevelConfig(PWR_PVDLevel_2V2);//配置pvd电压等级.当电压小于2.2V的时候产生中断
[*]
[*] // Enable the PVD Output
[*] PWR_PVDCmd(ENABLE);
[*]}
[*]
[*]void runInit(void) {
[*] runSetupPVD();
[*] runSetConstants();
[*] runMode = p;//启动 运行模式
[*]
[*] //系统tickcount时钟
[*] SysTick_Config(SystemCoreClock / 1000); // 1ms
[*] NVIC_SetPriority(SysTick_IRQn, 2); // lower priority
[*]
[*] // setup hardware watchdog
[*] runIWDGInit(20);
[*]}
[*]
[*]#define RUN_CURRENT_ITERM 1.0f
[*]#define RUN_CURRENT_PTERM 10.0f
[*]#define RUN_MAX_DUTY_INCREASE 1.0f
[*]
[*]float currentIState;
[*]
[*]//根据PID计算出PWM占空比的值
[*]static int32_t runCurrentPID(int32_t duty) {
[*] float error;
[*] float pTerm, iTerm;
[*]
[*] error = avgAmps - p;
[*]
[*] currentIState += error;
[*] if (currentIState < 0.0f)
[*] currentIState = 0.0f;
[*] iTerm = currentIState * RUN_CURRENT_ITERM;
[*]
[*] pTerm = error * RUN_CURRENT_PTERM;
[*] if (pTerm < 0.0f)
[*] pTerm = 0.0f;
[*]
[*] duty = duty - iTerm - pTerm;
[*]
[*] if (duty < 0)
[*] duty = 0;
[*]
[*] return duty;
[*]}
[*]
[*]//计算得到实际的占空比fetActualDutyCycle
[*]//参数duty:实际上就是fetDutyCycle传递进来的.想要运行的周期
[*]static void runThrotLim(int32_t duty)
[*]{
[*] float maxVolts; //最大的电压
[*] int32_t maxDuty;//最大的周期
[*]
[*] // only if a limit is set
[*] if (p > 0.0f)
[*] {
[*] //如果实际的占空比和设置的占空比不一样.那么会实时改变CPU的PWM寄存器.
[*]
[*] // if current limiter is calibrated - best performance 使用电流限制器校准.性能最好
[*] if (p != 0.0f)
[*] {
[*] maxVolts = p + p*rpm + p*p + p*rpm*maxCurrentSQRT + p*maxCurrentSQRT;
[*] maxDuty = maxVolts * (fetPeriod / avgVolts);
[*]
[*] if (duty > maxDuty)
[*] fetActualDutyCycle = maxDuty;
[*] else
[*] fetActualDutyCycle = duty;
[*] }
[*] // otherwise, use PID - less accurate, lower performance使用PID来计算.不大准确.性能低
[*] else
[*] {
[*] fetActualDutyCycle += fetPeriod * (RUN_MAX_DUTY_INCREASE * 0.01f);
[*] if (fetActualDutyCycle > duty)
[*] fetActualDutyCycle = duty;
[*] fetActualDutyCycle = runCurrentPID(fetActualDutyCycle);//用PID来计算出当前要运行的占空比
[*] }
[*] }
[*] else {
[*] fetActualDutyCycle = duty;
[*] }
[*]
[*] //设置到CPU寄存器里.算出来的实际PWM占空比
[*] _fetSetDutyCycle(fetActualDutyCycle);
[*]}
[*]
[*]//系统tickcount中断
[*]void SysTick_Handler(void) {
[*] // reload the hardware watchdog
[*] runFeedIWDG();
[*]
[*]
[*] avgVolts = adcAvgVolts * ADC_TO_VOLTS; //转换后的电池电压(一般是12V) = ADC采集电压原始值 * 电压算法
[*] avgAmps = (adcAvgAmps - adcAmpsOffset) * adcToAmps; //平均电流 = (当前电流 - 停止时候的电流) * 转换公式
[*] maxAmps = (adcMaxAmps - adcAmpsOffset) * adcToAmps; //最大电流 = (最大电流 - 停止时候的电流) * 转换公式
[*]
[*]
[*] if (runMode == SERVO_MODE)
[*] {
[*] //伺服模式
[*] fetUpdateServo();
[*] }
[*] else
[*] {
[*] runWatchDog();//检测电调的状态.做出相应的停机处理
[*] runRpm(); //计算RPM,计算PID,设置运行PWM占空比
[*] runThrotLim(fetDutyCycle);//计算得到实际PWM占空比.如果有偏差.那么在这里会实时改变PWM的占空比值
[*] }
[*]
[*]
[*] //计算空闲时间百分比 通过串口发送给上位机没什么用途
[*] idlePercent = 100.0f * (idleCounter-oldIdleCounter) * minCycles / totalCycles;
[*]//空闲时间百分比 = 100 * (本次循环次数 - 上次循环次数) * 最小周期 / 总共周期
[*] oldIdleCounter = idleCounter;
[*] totalCycles = 0;
[*]
[*]
[*] //处理串口数据 和串**互使用的
[*] if (commandMode == CLI_MODE)
[*] cliCheck(); //ascii模式
[*] else
[*] binaryCheck(); //二进制模式
[*]
[*] runMilis++;
[*]}
[*]
[*]//低电压中断
[*]void PVD_IRQHandler(void) {
[*] // voltage dropping too low
[*] if (EXTI_GetITStatus(EXTI_Line16) != RESET) {
[*] // shut everything down
[*] runDisarm(REASON_LOW_VOLTAGE);
[*]
[*] // turn on both LEDs
[*] digitalLo(statusLed);
[*] digitalLo(errorLed);
[*]
[*] EXTI_ClearITPendingBit(EXTI_Line16);
[*] }
[*]}
[*]
[*]void runSetConstants(void) {
[*] int32_t startupMode = (int)p;
[*] float maxCurrent = p;
[*]
[*] //运行模式
[*] if (startupMode < 0 || startupMode >= NUM_RUN_MODES)
[*] startupMode = 0;
[*]
[*] if (maxCurrent > RUN_MAX_MAX_CURRENT)
[*] maxCurrent = RUN_MAX_MAX_CURRENT;
[*] else if (maxCurrent < RUN_MIN_MAX_CURRENT)
[*] maxCurrent = RUN_MIN_MAX_CURRENT;
[*]
[*] runRPMFactor = (1e6f * (float)TIMER_MULT * 120.0f) / (p * 6.0f);
[*] maxCurrentSQRT = sqrtf(maxCurrent);
[*]
[*] p = (int)p;
[*] p = startupMode;
[*] p = maxCurrent;
[*]
[*] // Calculate MAX_THRUST from PWM_RPM_SCALE (which is MAX_RPM) and THRxTERMs
[*] // Based on "thrust = rpm * a1 + rpm^2 * a2"
[*] maxThrust = p * p + p * p * p;
[*]}
[*]
复制代码
下臂MOS接地线如此细 8mil??? 这是在开玩笑嘛!!可靠性未知呀!
这个电调可以用在航模上吗?非常不错的资料
高手在民间啊!强烈支持!
非常不错,谢谢分享!!!
楼主厉害了,这个程序是在什么环境下开发的?
楼主,厉害啊!人才!
p p[]列表怎么来的? 谢谢分享,很有必要学习学习 谢谢分享 谢谢分享 有时间需要好好看看 不错 资料还是相当全面的 资料还是相当全面的 楼主的资料确实全面,非常感谢 相当全的资料,很适合初学者