王栋春 发表于 2022-9-7 22:46

运放问题

现在有一个检测多节串联电池电压的应用。有两个检测信号,可能检测2节电池,可能10节,当检测触点接反时量的是负压,所以两个差分输入电压为最大±50V。比如50V1可能是2节电池,那电压就是+7.4V或-7.4V,50V2可能是5节电池,那电压就是+18.5V或-18.5V。现在要检测这两个差分电压,所以应用上很像万用表测电压原理。但当把-50V1与+50V2短路,用电压分压方式检测的话,各自的采样电压为2/100*(输入电压1+输入电压2),这样就没法采样准确了,想问下这个地方该怎么处理呢?   
1、差分信号不与运放供地,我觉得是可以检测。
2、发现一旦-50V1与+50V2短连起来,功能及不对了。

290399937 发表于 2022-9-8 20:34

看看跨阻运放电路是否能解决,类似采集差分高压,Vo=Vref+G*Vin

xch 发表于 2022-9-8 23:03

截图看不清楚。

计算公式似乎错的

xmar 发表于 2022-9-9 09:24

本帖最后由 xmar 于 2022-9-9 09:28 编辑

没太理解楼主需求。是不是要测量两组锂电池的电压。每组电池(2*3.7V或10*4.2V)电压范围是:±7.4V ~ ±42V。并且希望两组电池能够共地,是不是?问题清晰才好考虑测量电压方案。
或者画个被测量对象的电路图出来。

xmar 发表于 2022-9-13 10:58

**3iQCxw6tCZSLF0++/ixRor/jIr+Ul9oQLikqpB2SwJhwuX7/he7ChQ9213u/cfPJ7pG7L3QX7n/I/a2kTRu99g9191+QD7YP+RKLkP1tPf09YXjIKK23boSLJ7bHnt08PmOTReDYoTXhIj9s17eHJF7Cr0KHnUG4hDQ4n4PAmHDprn9wIxruvx6LgtPrVz/U3X3hQteb3yt4TuxffeQDJ6IkJVxO6z4TLXuIF6+to78IF/9IRbh42B17dvP4jE0WgWOHVn8FV3/DJdz7BIt1SH+ETuV1ZIPAHARGhUt3smpx9yOfTK6onAiPfVZBzgTQyerGqRhJCBfLD9tOpaX+Bk2qXCpt13b//iJc/CMV4eJhd+zZzeMzNlkECG0WJgo1TmBcuFzrNhP+3R/qXt1ZPYkeE42tVmztzx7h3H/99HxHuJym77R72uZO+pkg6k7F1oWdMjm2e/T3tD8IF/+HCOHiYcfs5qFWhQ2hrSJMOHlkAjnC5eRx0Qe6R14NxcG1rosfE+0jXLZCpUe4nNYdrrbY6sjoKs8UW4mRTT8y+otwmTx6ES4ehMxuHmpV2BDaKsKEk0cmkCVceh4XjQqI7QpLJHjOpQ8Ll9S7MyftJoSF1RsLKkvvrnWjtpuyJz7Foqmvv6y4+AcxwsXDjtnNQ60KG0JbRZhw8sgE8oRL6vHJyWOXeHK3VZH8Y49wGVi9GRUfU2xPRc7u47H+/iJc/IMY4eJhx+zmoVaFDaGtIkw4eWQCucJl5/FJ3+OUYHUjT7z0CJcpqyZTbM3/uH/xtZXrrm1+VfvIYay2eYSLJ3TMbh5qVdgQ2irChJNHJpAtXKLHRbsrEkOPg4byhoVLakWn75HNVihNfcdlI0rOPy4a6i8rLv5BjHDxsGN281CrwobQVhEmnDwygXzhcvp+yOabOucn9a1gCFYh8tN6hMukbwad1un8VpH5vhFIGf1FuPgHMcLFw47ZzUNt8TYWVjsu3mEchMCRCOwjXE6+RfSB7pHr+qNzAy/H7iVg+oTL6Xs1Fy504arLZuUjSjOhER5T5VJpoc3O+WblZry/CBf/4EW4eNgxs3moLdomDml8vWjncQ4CMxPYS7h0p38HRX9+f2c1w75GvO9f0e0XLvZ169G/nJt6Gff0cdGo7aDIGunvqS3CxT9oES4edsxqHmqLtekLZ1/6YjuCY00R+M+33+xu/eh72/1ff3x7tv7vJ1zs68TnV0G2KxUpATEoDPTuy4Bw2die5g/9VlFvuxm2I/6dvE/T01+Ey+RxinDxIGRG81BbpM1YKMfyF9kpnFo1ga++/Hx36YmHul98+L6d/cHHP9Jd+8bV7v2fv39QBvsKl61IGZnwWyrHiot/iCJcPOyYzTzUFmeTG8bccovrIA6tioBWVD76mUtbsfIrH/+F7uHPfnS7f+SxB7Z5v/WpB7s3br9+sP4jXIa+8ZSXh3DxD0+Ei4fdhJns0qVLnfbbiV/Ou3z58ibvTuLX8mRz48YNj7fYJAjsG8Kc8jllEq6QBIFRAl//ztc6CRWtskig/M33Xkra6NFRKG60+nKIDeGSJ06GVpAQLv6RiXDxsJswQ913332bn2O/ePHiuZYlZO66667Nfi6j6zqzkXhhGyaQE5qcMqlWhuyUN5Sfqq+FNIltE+vhUSI9Jd6NCULdSHSdVlpMtHz6uT/qfvreu2eZPWfP/vXTW5s+kdNjmpWMcEG4ZA2UAxVCuHjATpihdCPXG+sSKeGmG7nSJVJsu3XrVnfvvfdu0pWHcDEyw8eh8AzlDdd6kpuyV5rtOXW0VEZjdvcbGhe2nwGN8XhDqJ8nYisof/rVK+czRq5e/PaN7QrN2++8NVJ6v2yEC8JlvxFTtjTCxcMzNXvtUY9Ei27m4U37nnvu2aSFj4NsBcbyEC75kFMhSqXl13hWMqxH5/F+VpIzEy5aYbx58+Z2N0GOUB8eI3oRV4+H9NKtvXD73vvvdc+8dK174Vt/cc7Y0r/9+je36XoHRvZ/+OXL27QSJwgXhEuJceStA+HiIRfOXA573cQlXOxxUd9jIt3UlWc3f4TLfrDDMIXn+9WSLh2LlfA6bdFmat/YvXLlyuYzIFFuG0LdSJwdJVgkPL712stniV3X/eYf/9pmDxMlZFT2pe9+Y5usr0wrTbsJn23mhBOEC8JlwvCZbIpwcSCU6JiyaaVFddjjIntMZEImrrvv5h+X4/o8gUOJibDe1Pl5L9q+srEbrrhoVdFWETX2bUOoG4mTo95tkeB44BO/fD6j6zYrLrFI+b0/+50dMSNDfcNIZUt+ywjhgnDZGZQzJkybgWd0dElNTRUu6kv4uEg3cV33vaxoN38d2dIEUgIiTktb7pca15m63q/GdZe2savPTLhrvCPUh2OvVRYJjtRjnrfeeWsjUh596vc3ldj1lef/ZKfSx68/uqlH77yU3BAvfvFywq5kNNqqC+HiiHcJ4WI3dD3r1008XDKPXbKyCJczMinB0JdmVsqfsvXVn0qf0s6abG3sSqSEKy3huy1xf82m9fFuL9fqm0SpLVxhscdE+jp0vOkbRhJAv/7YH3SaMEvtaqdUXa3VE8eI6/0ITLyV79fYWkqXEC72Xov9LzRcMo85cSM/IZISCDlpIU+V92w57YRlPG2s0SY1du0xUZ94Sdmskc1Yn/Q1ZgkOrZikNhMreqclFDFx2c++8JlNPXrRlw0CayDgvI2voev+PpQQLmrdbuBDj4lUjhv5WaxCcZB7fmbtO8ttJywXt6S8FrfU2LU/CaDPUfgtOuOTsrG8lo56J0XCRe+o9G16SddEy+dffDJZzL5O/Z3v/30yn0QI1Eag0dvptDCVEi66aesmPbTaIk+tXOomP60ndVqHAmHsvGQPx9oK88N2ld7q1idC9OhIn6PUI9I+mxYZ6sVciRd9Oyi16R0X5Wv/95/8204RfZPI/nhdzh+u26mABAgskEDDt1R/NEoJF78HWIYiYej8UKSG2rQ8ta3zlrch0S2Boj38e0ZiNWTTGkv90TmJko9/8eFk1/WYyFZdUgW+9LXPb+yHVm1SdqRBYMkEGr+t+kKDcPFxK21lAmHoWLrNvvr6fOgrTzoExgi8+E9f7Z76x891H370VzfiQ79XtM9mj5okfFIv7e5TF2UhsCQCCBdHNBAuDmgHMukTDJZ+oGYHqz1m24OOkVkVgbff+6/u+mtf7B5/8RMb4aLHRrnvqUi02B+v06oLGwTWRKB54SIRMse+pkGzpL6YSEgdj+WnfNFmx2P5Qbv1Evjf//uf7m9vv9T9+Kdvds++/uXut5/8jY140erJ0A8t6p0WezykspeeeKjoX8ytlyier4lA88JlTcFsrS+hMFiKcAl9Ujzi69ZiRH99BL7+oxe6a698obvxg+c24uX5N651H3v2d7tf+tj9WwGj3yHSV531Nedr37ja6dpe5pVokYAp+Wf+fT3BCgLlCSBcyjOlxhkIpARBLF5mcONcEymfVKAv/ZwxFxA4JfB3//Fyd/21L3VPvfK5zR6Kl8+8/KnuwU9/eCteJFDi/SOPPcA7LYymVRNAuKw6vOvs3JAQMPEyd8+HfJIvY/lz+0t7yyTwz2//YPNoyESLHSVe9M7Lc68/tTm+/c5bG3GilRb9gTod9RMBfV+bXmZv8QoCPgIIFx83rI5EIEcA5JQ5hvtL9esQLHJfYC9d7hB9mavOn/zsx91zbzy1XWkx0aJ3XG7/94/mcoN2ILB4AgiXxYcIB43AGib+NfTB4tF3tJfd+/ItvXQ5q7fG47vvv9v9+RvXuqdunTweOhMtV7vvvvkPNXYJnyFwMAIIlx60dlPd59hTVTJZv9Oivxqq/erVqztllGb5+iNdtumPcyk99TsvZtP3q7tWR43HNU34a+pLaizpM6PNjqkyYX6pcn3t1JD+le8/s7PS8vQrX+j+6l/+sgb38RECsxJAuMyK+6QxCQ/drHXU7xTpPBQvOlea8iw/FCOWrh9qDDf90rTsrly5EiZXf77GiX6NfdJA0/izLTy3NDuGeeG55dsxzAvPLX8tR1thCY8v/PD5Tl+LZoMABM4TOLvLnE/n6kAE9OfNJTxsxcREikSMbSZoJEzu3LmzFTCWbwIl/o0jEzRWbg3HYB5cQ3fO9WGNfYvFRXxtAOL0+Hrfcla+1mMoWHT+lTee7t77+c9q7Q5+Q+CgBBAuB8U7XrnEh27aJmRkEQsQW6G5efPmpkKtqMgmFDuWFtYz3vqyS6xxYo+Jr6mPKfExR1rMtMZrEy76S7n2zaEa+4HPEJiDAMJlDso9bdjKiY62aUUmFiWxcFFZEzf2uMjqKv4L0ppZM/fMYrnVGZLVH0tzU33ZkDMb15jM2eNgxcIlvrbycXp8PVROZXP20kxK1vfMN5/o9J7L6z95pdOLumwQgEA/AYRLP5uD52h1RIJDIsTeS9Gqim7C4WpKSrjIVuXscZEJmeJOb2bB4rVmVXjEprP8K1GojT6e3WY0Zvu2MC88j8tbnh3j/CqvB7hU2R+chsABCfTfRQ7YKFWfJxCLjvg6JVy0sqIbt/LsMVH4Au/5FiZcHfmGeuTmJ4AbN11z38Lem8CwY5gXnlu+HcO88Nzy7RjmVXveymCoNkA4viQCzQsX3fzm2C3oEhz6enP4LaJYmPQJFz1GCjeVk+92jPPDsu7zBdxQF+CCG1+f4Rr71NdXpdtnbKjMvuXG6qoqv7UBUVVwcHZpBJoXLnMHJHyHRY+F7OVciRfb7H0V5UngSJiE+VZOKyw2IajMQbaF3FAX4kYRxGvqSy4QjdOcrXS5nDYXUSaTzyJ8xQkIHJlA3t3kyE6urflQcOhGLdFh3xhSXyVubBXF8lMv3ZoIUpnwj9QV5bWgG2quK7nlinLKrGzJvmV2gWKHIMDAOARV6lwpAYTLkQIr0aEVFXspN+WG8lTGvjmUKiPBE4qeVJlJaQu7oY65o/yxMpN49BjntJlTpqd6ktdOgMGx9gjTv4IEEC4FYa6yqgXeUPtcUnq4zx2PPr/kx1De3H7S3gIJMEAWGBRcWioBhMtSI7MUvxZ6Q43d0nW8HwNh7Jd8SKUdwzfaXDABBsmCg4NrSyOAcFlaRJbmz4JvqOaajqn9WCjNL7Ufnh/Ln0O0q5fG+96r0iNO5ekxZ2qzb9apTPwYVDZ99YZ16VGryumldb3MPvZINbRd5PlaB8oiYeNU7QQQLj0R1Auv++49VdWdvPAbqtwb2o8F33w6VvuHbFfvVOnl8dQ32ewPI9rL5fG34exvDlm+jhIhtql8ql7L1zF8uV1lw7pSL7GHtos9X/jnbLHccKxJAggXR9glaJrZFtxXEwdDx7njFPsyd/uHbk8rG6FQCNuzb7lpBUSbiZhw5cWEhlZalK7PkpWXzZhwsR8llV1Yr7Wl+uNVnNDHxZ4v+HO2WGY41iyBhmbgcjFGuJRj6a0pFgh91976c+362rV5yI659S25nB7NmNAwARL6a/n2qEcrM1Ze5ew6XIWJ64mFi0SN0uybczpXnam/Em15oaAJ/Vv0+ZoGyqJB49waCCBcHFFEuDigFTQZEgtxXsFmN1XF9Q9dW9sqs4ZNj3m0a4sFh9Js1cMe18RCxR4ThaIjricULhIt+qypXttUXmkmZCxdRxNO4QpOmL/o87UMkkVDxrm1EFjJLXXecCBc5uUdtjYkFPryQnvPeV+9Q+lxOyq7pi0WHOqbrXiYqIiFiwkLW5GRTVyPCRcTQaFosfJjwiUURtUwX9sAqQY8jtZIYGW303lCgHCZh3PcypBQGMoL6/HOD0P1p/LCNtd4HgsO9dHExtQVF32+bI9FSNxGyNbybFUozFv8uXdgLr5jOAiB8gQQLg6mCBcHtMImKbHQl2ZNT50b+upPpVubaz2mhEu8ohKvuMTXYhPXY6s29m6L8sNvHenFW6XFj4Pu3LmzSZd9ldvUwVllp3EaAj4CCBcHN4SLA9oMJikBEaaVcCGsb+i8RFtLriMWHPJVKy36bJio0GqJrsOXZc1OQsO+IWTlVYc9KlJ+XJ/yJX6sXq2wSMionNmprVDoLJnhOd80mNggAIEsAnxasjCdL4RwOc9jqVehsCjpY1hv6rxkW0utywRI7J+tmChfn5N4BcREh9nrGAoNEyBWr0SN6pHI0Wb1Kk27VnmsTUuL27S6Fn1EuCw6PDi3LAIIF0c8dINsZqu8r+a+HUvFTfX17aXaWHI9EgzhS7ahr1r1kHiQSNHKSbzpHRQJEq2YhKJF5WQb1qt8Xdt7K9auHbXaYjaWpuvqttIDtDoAOAyBfAINzcD5UEZLtnSTqbivsevx9WicewpYPTqm9h4zkiHQT8AGVX8JciAAgVMCCBfPUGjpJlNpX/vc7kvPHQaxva7jPbcuykFgSyAeWNsMTiAAgZgAwiUmknPd0k2mwr6OuTyW3zcE+uyUbnufLekQGCTQN7gGjciEQJsEEC6euLd0k6msr7nu5paz4TFWXvljZawujhDYIcDg2UFCAgT6CCBc+sgMpbd0k1lxX3O7Vrrc0NAir1ECuYOsUTx0GwIhAYRLSCP3vKWbzMr7Ota9sfzcIUM5CAwSYKAN4iETAiEBhEtII/e8pZtMA33t62Jfeu4woRwEsgkw2LJRURACCBfPGGjpJtNIX+NuxteeYYINBLIJMOCyUVEQAggXzxho6SbTUF+tq3b0DA1sIOAiwKBzYcOoTQIIF0/cW7rJtNTXjm8GeT4O2BQg0NjnrAAxqmiYAMLFE/yWbjIt9RXh4vk0YFOAwNjPiNjPKOinFMJdP51gv+MUuqGfP7By+mkFNgisiQDCxRPNlibzlvqKcPF8GrApQGBMuEiIqEz445ThD06G4kVCxcpKvOhcRzYIrIUAwsUTyZYm85b6inDxfBqwKUAgV7hIwISb/dq2Vl5sM3Fj1/YL2zdv3rQkjhComgDCxRO+libzlvqKcPF8GrApQMArXPSr2bINhYsESvir27YCg3ApECiqWAQBhIsnDC1N5i31FeHi+TRgU4BArnCRQNGqi3atttjjovBRUeiOxEq8AhPmcw6BGgkgXDxRa2kyb6mvCBfPpwGbAgRyhYuJEJXXrndXxkSLymllhg0CayGAcPFEsqXJvKW+Ilw8nwZsChDIFS72jos9/pFwuX379o4HttKCaNlBQ8IKCCBcPEFsaTJvqa8IF8+nAZsCBPYVLmrSXrqNvzGk91vsERIrLQWCQxWLI4Bw8YSkpcm8pb4iXDyfBmwKEPAIF620mEDR33mxTUJG9elo78PoeOfOHSvCEQJVE0C4eMLX0mTeUl8RLp5PAzYFCHiEi5qVYJGtBIyEjB4R6Tq1862iAoGiikUQQLh4wtDSZN5SXxEunk8DNoUIDIkXrZZIeKRWTZRueVbO0sJjITepBgJHJ4Bw8YSgpcm8pb4iXDyfBmwKErCVkoJVUhUEVkcA4eIJaUuTeUt9Rbh4Pg3YHIDA0OrLAZqjSghURQDh4glXS5N5S31FuHg+DdgcgAArLweASpWrIYBw8YSypcm8pb4iXDyfBmwKEkCwFIRJVaslgHDxhLalybylviJcPJ8GbAoQQLAUgEgVzRBAuHhC3dJk3lJfES6eTwM2EwggWCbAw7RZAggXT+hbmsxb6ivCxfNpwMZBAMHigIYJBE4JIFw8Q6GlybylviJcPJ8GbJwEEC9OcJg1TwDh4hkCLU3mLfUV4eL5NGAzkYAEDBsEIJBPgE9MPquzki3daFrqqyLcWn/PRjVnRySQs/qiX4TW7w+Fe/gbRToP83Qum75NP8YYl9cPN9om2/Da0uPj1atXN+X0swPaVWfoV1yeawhMJYBw8RBsaXJrqa8aC6311zP+sTkYgaHVF/tBRRM5OurHE22T0AjzdC4R0bfpl6Pj8mrDNtmG15YeHi9evLitw0SQ+ZkjesK6OIdALgGESy6psFxLk1tLfVWMW+tvOK45XwQBExOxMxIEEgfh7w+Fv11kQiPM16pK32aiQwImtLHyVp9dx8cbN25sRYvqsE11mXhh5cWocCxJAOHiodnS5NZSXzUWWuuvZ/xjc3ACsXiRGFCaVlUkBkKhYM6YsFGeyujXooc2EyZ61KOVm1jkWL7qMDGiNqycCZ/Uyorqk7+qgw0CpQkgXDxEW5rcWuqrxkJr/fWMf2wORiAWLNaQhIjl2WpGKAokJuJ8lZPg6NusHjvKPhREJly0qqPzVL7SwsdV1pYJLdXNBoHSBBAuHqItTW4t9VVjobX+esY/NsUJmOjoq1irIlPU9ukAACAASURBVBIPJizsfRYdtWl1RfkmIkzoKK1v00qJ7GWrxz4SGdptpUa2utZR/qnOcLMVF2szzDPhMtR+WJ5zCOxDAOGyDy0r29Lk1lJfFd/W+mtjmuNRCIwJlj6nJC5MVPSVMSHSlx+nmxiyVRoTLOZj/EjI3nEx8RTWZ8IpJWrCcpxDwEMA4eKi1hC21iby1vrrGf/YTCZgYiC3InsPxcrboyFb0dC1RIK9f6JyY8JF5VWvbRIm8isWLlpZsbywvOyUrnbMxuqSX0png8AhCDQ0AxfE19Lk1lJfNURa62/BjwVV7UdgH/FiqyE6SiTYta1o6BGS6pNgUL6teISrJDq3a1uxkbiQGNEeC51QfFh5E0rqqdqQqDE7+aJVGJWRL/LR/NuPDKUhMEwA4TLMJ52ryY19vQzSUScVAgchkCNgJBxMEFh5EyHmlK4tT0eVl51tJjDs2kSH2ZiIsXzZK822WCzF/uhaQsXq0zG0t3o4QmAqAYTLVIJrt2cFYu0Rpn8LIWAT/pA7WtGQOIgfzZiNPTJSuXiTTWwnYaOVE63YhCJHtqorLq9rexxl+VavrvUNJLu2Y+wH1xCYSgDhMpXg2u0RLmuPMP1bGIEcAbMwl3EHArMSQLjMirvCxhAuFQYNl9dAQAKGDQIQ2CXAJ2OXCSkhAW6eIQ3OIXBwAqy4HBwxDVROAOFSeQAP7j7C5eCIaQACIoBgYRxAII8AwiWPU7ulEC7txp6ez0IAwTILZhpZEQGEy4qCeZCuIFwOgpVKIYBgYQxAwEcA4eLj1o4VwqWdWNPT2QggWmZDTUMrJIBwWWFQi3YJ4VIUJ5VBICSAgAlpcA6BPAIIlzxO7ZZCuLQbe3o+GwEJGDYIQCCPAJ+WPE7tluKG2m7s6flsBBAus6GmoRUQQLisIIgH7QLC5aB4qRwCIoBwYRxAIJ8AwiWfVZslES5txp1ez0oA4TIrbhqrnADCpfIAHtx9hMvBEdMABBAujAEI5BNAuOSzarMkwqXNuNPrWQkgXGbFTWOVE0C4VB7Ag7uPcDk4YhqAAMKFMQCBfAIIl3xWbZZEuLQZd3o9KwGEy6y4aaxyAgiXygN4cPcRLgdHTAMQQLgwBiCQTwDhks+qzZIIlzbjTq9nJYBwmRU3jVVOAOHiCaAmc/b1MvCMCWwgMIEAwmUCPEybI4Bw8YS8pVWIlvqqsdBafz3jH5vyBBh35ZlS42oJIFw8oW3pJtNSXzUWWuuvZ/xjU54A4648U2pcLQGEiye0Ld1kWuqrxkJr/fWMf2zKE2DclWdKjaslgHDxhLalm0xLfdVYaK2/nvGPTXkCjLvyTKlxtQQQLp7QtnSTaamvGgut9dcz/rEpT4BxV54pNa6WAMLFE9qWbjIt9VVjobX+esY/NuUJMO7KM6XG1RJAuHhC29JNpqW+aiy01l/P+MemPAHGXXmm1LhaAggXT2hbusm01FeNhdb66xn/2JQnwLgrz5QaV0sA4eIJbUs3mZb6qrHQWn894x+b8gQYd+WZUuNqCSBcPKFt6SbTUl81Flrrr2f8Y1OeAOOuPFNqXC0BhIsntC3dZFrqq8ZCa/31jH9sihPgT/4XR0qFKyaAcPEEt6XJraW+aiy01l/P+MemOAGES3GkVLhiAggXT3Bbmtxa6qvGQmv99Yx/bIoTQLgUR0qFKyaAcPEEt6XJraW+aiy01l/P+MemOAGES3GkVLhiAggXT3Bbmtxa6qvGQmv99Yx/bIoTQLgUR0qFKyaAcPEEt6XJraW+aiy01l/P+MemOAGES3GkVLhiAggXT3Bbmtxa6qvGQmv99Yx/bIoTQLgUR0qFKyaAcPEEt6XJraW+aiy01l/P+MemOAGES3GkVLhiAggXT3Bbmtxa6qvGQmv99Yx/bIoTQLgUR0qFKyaAcPEEt6XJraW+ols8nwZsBghIkJTcB5oiCwLNEEC4eELd0mTeUl8RLp5PAzYQgAAEZiWAcPHgbmkyb6mvCxAut2513c2b53el9W23b5+V7StDOgQgAIE1EUC4eKLZ0mTeUl8XIFzuuefkNRthD3elxwLm0qWuu+uus3I6l+hhWyYB7yOjpfXmE0/+sGPfn8HS4lizPwgXT/Ramsxb6uuChMvFi10nYaL93ntPxInEi21aaZFQ0X71atddvrxbxspyhEApAhIsXXeN3cHghF2pSLRdD8LFE/+WJvOW+rog4RKvnNhKzJUrJwNWYkVpEiy26VpChg0ChyCAaJku2BAvZUYmwsXDsaXJvKW+Lli4aOVFodAxtYUrMKl80pZHoO/R0fI8PfEI4YJwWcrYRLh4ItHSZN5SXysQLuHjonDo2opMn7AJy3IOAQ8BhAvCxTNuDmGDcPFQbWkyb6mvFQiX++7bHbAmWlJ5u6VJgYCPAMIF4eIbOeWtEC4epi1N5i31dcHCRaJEoYhXVBAtng8wNh4CCBeEi2fcHMIG4eKh2tJk3lJfFypcbtw4+waR3mWxzb5txEqLEeF4SAJjwuX6/forwR/srvd+4+aT3SN3X+gu3P+Q+1tJmzZ67R/q7j/3l4qHfIlFyP62nv6eMDxklNqoG+HiiXNLk3lLfV2QcLGvOuuoEGgPV1v07SJLD8vyrSLPBxqbHAJjwqW7/sHNzxvcfz0WBafXr36ou/vCha43v1fwnNi/+sgHTn4+ISVcTuvefeE5Q7x4bR39RbjkjLTxMgiXcUa7JVqazFvq6wKEi1ZP9Pgn3JWmVZdwk4gJy9i5VmHYIHAIAqPCpTtZtbj7kU8mV1ROhEeGkEgImJPVjdPffUoIF8sP206lpf4GTapcKm3Xdv/+IlzKjEyEi4djS5N5S31dgHDxDEdsIDAHgXHhcq3bTPh3f6h7dUd8RI+JxlYrtvZnj3Duv356viNcTtN32j1tcyc9XBGaYrtHf0/7g3ApM1IRLh6OLU3mLfUV4eL5NGDTCIEc4XLyuOgD3SOvhuLgWtfFj4n2ES5bodIjXE7rDldbbHVkdJVniq3EyKYfGf1FuBT9lCBcPDhbmsxb6ivCxfNpwKYRAlnCpedx0aiA2K6wRILnXPqwcEm9O3PSbkJYWL2xoLL07lo3arspe+JTLJr6+suKS5kPC8LFw7GlybylviJcPJ8GbBohkCdcUo9PTh7ZxJO7rYrkH3uEy8Dqzaj4mGJ7KnJ2H4/19xfhUubDgnDxcGxpMm+prwgXz6cBm0YI5AqXnccnfY9TgtWNPPHSI1ymrJpMsTX/4/7F11auu7b5Ve1GhstBu4lw8eBtaTJvqa8IF8+nAZtGCGQLl+hx0e6KxNDjoKG8YeGSWtHpe2SzFUpT33HZiJLzj4uG+suKS5kPC8LFw7GlybylviJcPJ8GbBohkC9cTt8P2Xyb5/ykvhUMwSpEflqPcDkVShd2vj10+G8Vme8bgZTRX4RLmQ8LwsXDsaXJvKW+Ilw8nwZsGiGwj3A5+RbRB7pHruuPzg28HLuXgOkTLqfv1Vy40IWrLpuVjyjNhEZ4TJVLpYU2O+eblZvx/iJcynxYEC4eji1N5g311bpqR8/QwAYCayWwl3DpTlc79Cf4d1ZC7GvE+/4V3X7hYl+3Hv3LuamXcU8fF43aDoqskf6e2iJcynw6EC4eji3NbI30Ne5mfO0ZJthA4JAE/vPtN7tbP/redv/XHwc/ZHWAhvcTLvZ14vOrINuVipSAGBQGevdlQLhsbE/zt79XlPgrvb3tZtiO+HfyPk1PfxEuRUckwsWDs6VZrYG+9nWxL90zZLCBQCkCX335+e7SEw91v/jwfTv7g49/pLv2javd+z9/v1Rz23r2FS5bkTIy4bdUjhWX7XCadIJw8eBraUZbeV/HujeW7xk+2EDAQ0ArKh/9zKWtWPmVj/9C9/BnP7rdP/LYA9u83/rUg90bt1/3NNNrg3AZ+sZTXh7CpXd47ZWBcNkL12nhlmazFfc1t2uly3mGHDZtE/j6d77WSaholUUC5W++91ISiB4dheJGqy+lNoRLnjgZWkFCuJQZjQgXD8fcmSxR9z333NPddddd3ZUrV3Zyla799u2TZ9U3btzorLzS7z3GT/9O6OtOB2dIyHU3t5y5PFZe+WNlrC6OENiHgFZaTLR8+rk/6n763ruj5s/+9dNbmz6RM1pJVADhgnCJhsTRLhEuHvQTZqjLly93ens9FiESKUqXULFNYkVpFy9e7O67776knZU92HFCXw/m00jFYy6P5fdV32endNv7bFtNv3Tp0kaMmygPjxrX4Xbz5s1zQj3OD8u2dG4rKH/61d3/7AxxePHbN7YrNG+/89ZQ0aw8hAvCJWugzFAI4eKB3DeDZdSl1RS7eYfFTZhI2GjTiozKhTfvlF1Yx0HOJ/T1IP5kVtrndl96ZrU7qyqqL95z62qhnISLxLfGrkS57bpWuo13sbDxrTGvcsqXfcubXsTV4yG9dGsv3L73/nvdMy9d61741l+cQ2Pp3379m9t0vQMj+z/88sl9ZZvhOEG4IFwcw+YgJggXD9aJs59WW3RTDh8X2U17yJ2cMkP2rryJfXW1Wcgodj2+9jZj9eiY2r31rtHOhEssQGzl0VYYJeh1buW0+qLPiOWvkU1OnyRYJDy+9drL54r/5h//Wqc93CRkVPal735jm6yvTCtNuwmfbeaeJwgXhMueQ+ZgxREuDrS6oU7ZJFhUhz0ussdEdp2q21ZkdJx1m9jXWX1NNGbu2zFRxJWk+vp2V4UrNeoTLpbeN55tvJuQWSmewW7p3RYJjgc+8cs75bTiEouU3/uz39kRMzLUN4xUduq3jBAuCJedgXikhGkz8JGcPnazU4WL/A9XT+wmHa7AhH20/KP877P0jB927MDnobAo2VRYb+q8ZFu112UCReNd49d2fYaUduvWrZ0uqkwo7HcKNJKgVRYJjtRjnrfeeWsjUh596vc3NOz6yvN/skPn8euPburROy9TN8SLX7ycsJsaAexFAOHiGAclhEv4uCgUMbE7RxUtmxFSxxBJCYg4LWbruY7r7Lv21L1Gm1i46LOjXePavj0X91sC3uxUrtXNXq7VN4lSW7jCYo+J9HXoeNM3jCSAfv2xP+g0eU7ZVfcU+5Zt47hw7SdQx6zk799BLEsIF3s8JNFiN/LYWb2kqLyjrLSYM5qZF7j1CYZUurk/tSupuvvSrM3WjyZAdNRmj0k17vUZGNo07lWuT+AM2a4hT19jluDQiklqM7Gid1pCEROX/ewLn9nUoxd92SCwBgLLnJUWTraEcFEXTbSovvgmbsLGhIstsQ+9B3MQbFNn+4JO9YmEsfTQBW93xtqI88M2Wz6PhYtYmCDX+Lft6tWrG4FuAkfp9vlIPU4yuzUf9U6KhIveUenb9IKuiZbPv/hksph9nfo73//7ZD6JEKiNAMLFEbFSwkXL4Lo5p1ZUdHNXXmp3uOw38c70/hYHLWOBkHM9WGFGZk4bcZm4WuW3uKWEizhozOtzpHGuLfwzAbKxR6SzC/WFBUkv5kq86NtBqU3vuChf+7//5N92iuibRPbH63L+cN1OBSRAYIEEGr2dTotEKeEyzYuZrBc448YiYei6NKWhtuI8a1vprW4SIRLf4UqKWGhF0US5vvqsTasuStPnS8fWRYuY6I/OSZR8/IsPbxjF/+gxka26xHm6/tLXPr+xH1q1SdmRBoElE2j4luoPC8LFz66UZSwS+q5LtddXT1+7Jlbs2GdP+i4BPRpq9b2WkMaL//TV7ql//Fz34Ud/dSM+9HtF+2z2qEnCJ/XS7j51URYCSyKAcHFEA+HigHYAkyHRYHkHaHawSmvXjoOFyYTAAIG33/uv7vprX+wef/ETG+Gix0a576lItNgfr9OqCxsE1kSgeeEiETLHXu2g0Qy84M0EQt/xWK6bP8dqn3brJvC///c/3d/efqn78U/f7J59/cvdbz/5GxvxotWToR9a1Dst9nhIZS898dDkv5hbN0m8XyOBZc9KayReW58WLFzMNRMJ8fFYqM0vtR+eH8sf2q2PwNd/9EJ37ZUvdDd+8NxGvDz/xrXuY8/+bvdLH7t/K2D0O0T6qrO+5nztG1c7XdvLvBItEjBT/8x/feTwuAUCCJcWojyljwudeWO3dB3vU7rttY39Uj2pNG/92K2fwN/9x8vd9de+1D31yuc2eyhePvPyp7oHP/3hrXiRQIn3jzz2AO+0rH+YNN1DhEvT4c/o/AJn3T6XlB7uGb0rWqTPLzUylFfUCSqrmsA/v/2DzaMhEy12lHjROy/Pvf7U5vj2O29txIlWWvQH6nTUTwT0fW26aig4D4GIAMIlAsJlRGBhM+6YO8ofKxP1sMhlTps5ZYo4QyVVEvjJz37cPffGU9uVFhMtesfl9n//qMo+4TQEDkEA4XIIqmuqc0Gzba4rueWOEaYl+1aSR+4370qXK9mHOet69/13uz9/41r31K2Tx0NnouVq9903/2FOV2gLAosngHBZUIj0tyv0x7jsD3KlXEvl6+9eKP3OnTs7JlZnKm+ncCphITPtQtxIEdo7bU19SXXevqWXygvTSpcL667t/Cvff2ZnpeXpV77Q/dW//GVtXcFfCBycAMKlB7HdVPc59lSVlawfn7O/Gqo2Uz8DYH8mXfkqawLn8uXLm690p/7SqNnEv4WU5ZQKLWCWXYAL2bhyC66xT9Z3jU9tdrT0+Gj5dozz7dry7WjpazraCkt4fOGHz3f6WjQbBCBwngDC5TyPo1yFv9MigWG/06KjbZam33YxoWLiJrS38jr2pYdlBs81AR15hj1y84N4pmausW+huAjPY1ZhXnjuLRfb1XYdChadf+WNp7v3fv6z2rqBvxCYhQDCZRbM443ot1xsVUQrKbqZmzCRtVZYtNumPF1LnGizlRWt3NhmAicUQJY3ejTRYsdRg/IF1jixx5TW1sdYhMTX1v84Pb7et5yVr/VowkV/Kde+OVRrX/AbAocmgHA5NOE965d4MRGiH52zLSVcdLO3x0USLLoOHxdZPXoHZu/NBEvmMbPYZgEnt+zePldqkMtjn3J7gc6oWGMrZ49DIJt4K5mW49OmvYw+lma2T33PfPOJTu+5vP6TVzq9qMsGAQj0E9i9q/SXJWcGAhIoutGGAiS1AmOixISLXAvFzeTHRKrQbvYz9DvVRGLOSxWrOm3tfYxFSnxtwYvT4+t9y1n5ao5rHwjVBAJHayCAcJk5Slr9kOiwXY9zwk2CQ6suEiEqo002upHbtdJ0rrRQuEjsKE2rL/aYSI+gJm1HvqEeuflJ6MaM19y3sO+hCAnPwzI6D/PC875yQ2Vim8VftzIYFh8IHKyBAMJl5ihJaNjKiI6hsAi/smzCxB7zmI25a/mhcAkfFylfNvYOjNntfVzADXUBLuyNbcxgjX3q67MJDDvOVa6vnUWmtzQgFhkAnKqJQPPCRTfTOfahQSHBIZGhbwxpk4AxoWLCo+86rlflrD8SL5O3hdxQF+LGZJyqYE19yQViY3Ks/D7lxuqqKr/FQVFVgHB2SQSaFy5LCYYJDlsp0Q3chIx81MqM0lTOVlvCfOuHfW1aZePHUFZmr+OCbqgLcmUvhGHhNfQh7E/uucZjzla6XE6biyiTyWcRvuIEBI5MIO9ucmQnW2heKyt6R8VWVsJHSNZ/pVl+SrSonH0rKXy51+xdx4XdUHPcySnjYjHRaKl+TewW5iUIMDhKUKSORgggXBoJtLubC7yhDrmkvKF8N4cRw7E2x/JHqid77QQYIGuPMP0rSADhUhDmKqta6A015ZbSwn3ueKR8kg996XP7R3sLJsAgWXBwcG1pBBAuS4vI0vxZ8A01dE3n8X4MlKFPaj++PoZPa25T36qzb95V3U8GStXhw/l5CSBcenjrJcF9956q6k5e+A1V7vXtxwJvyOx4LD8O2a69RB63ISFheXofS9+Yi7fwXa74XS3Li23C6/B9MPuMqq24rtBm6ee5LyUvvR/4B4E5CCBcHJSbusksfPbtEy2W7gjvZJNjtj3Z+YwK7JtrEgvxFr48rnN9Vuw3uFRWwkRpqsO+HRe+iG6iJ67Xru1PBagOlZWtBIu15fpdLqv8iMexe0r4Yr4xtuOQYDO7kPERu0nTEChCAOHiwDh2k3FUuVyTBQsXEwhDx7nA9vkwV/tztKPfzjKBoM+AzsPN/gCiTaTxtVZKZCPBoS2+VlosXPQYSKs49scZTTRZHda+yphvoVCy/KUfx+4pEh7GXH233fqc+tMHIROEy9JHAP7tQwDhsg+t07JjNxlHlcs1Wahw6RMKcfqhwMbtpK7VttLXsmny04RpP0kRCxebXG0S1cSpz4qJDLsOv6qvOsJ6VNauTfjo2oSLzlVn6hGUiRoTTjVxH7unGNtYgNhPexjjsM9KU73aY7uwHOcQqI3Aim6r86Efu8nM58kMLS1w5k2JhL60koT62kilh+0qfw2biQf1RQLCBIb1zSZKCRRtJlRsUk1NvnE9Kqs02Vqe1Wft6vMXpln7Vn8ojCxv6cexe4r1LRYglh4/IrPHZybmYrul88A/CAwRWMktdaiL5fPGbjLlWzxijQubdVMiYSxtKr2x+lP5cZsqs6bNREXYp1LCRZ8v1a9jvLIStxG2b5N4jZP02D3F+iYuYmC7sQq/WaUVMaXLxuxqZBLGlnMIhARWdjsNu3a487GbzOFaPkLNC5pxUwIhJy2k5u1OTjthmbDNNZ6nhItNklMfFdlkrKMm6HCzx0epiVhl5ZfenaltG7unGFsTLiqvXSsqcX9N1IiB2aV41cYIfyFgBBAuRmKP49hNZo+qll/UO9MfuGehSBg7N1emdmWsnTDf2lzrMSVc7H0Le8fERIY9xtCqgD47Jkbs5VzVZZvyVEa2qkfn8aRrAiV8XGRtWdtWXy3HsXtKLECsv2IXvoxsMTCBo6Pq1tHiUAsT/IRAHwGESx+ZgfSxm8yAaX1ZU2f7GXscCofUeQlXUvXGaSXaWXodmgi1h1soRDTRmggJJ1ZLk8BIvX9hosTqtXbs/Rq9v2J1KE8TtdWjz6Xyapygx+4psXARHxN2YRxUzpjZ0YRLje/+2DjgCIGQAMIlpJF5PnaTyaymjmKalSvdQkFRsgthvanzkm0ttS6bFGP/tBKgPJssNZGGm1ZJQuERiwxNrrK3zSZiK2ft2lH5ZmNpNU7QY/cU9VNlYp7Gsm+lqc/O+HKEQI0E6p2Vjkm74sl8b2wV9zV0PTzfm0HCQPX17YnizSWFj3FSnddjo/jdjFS5VtJyhIuEWSxcwq+mp5irfMquFa70c50EEC6euJaeBT0+zGQzdkOdyY29m0mFKJW2d8XR32ZJiRdPndhAQJ+1Wj9vRA8CcxJAuHhol5oBPW3PbFPjjXQoPEN5OWhT9kqzPacOykBgiAACZogOeRDoOoSLZxSkZi9PPRXY1CZcckKTUyYVmiE75Q3lp+ojDQJDBGr77A31hTwIlCSAcPHQbGiGWuvNc98Q5pTPKeMZbti0RYAVl7biTW/3J4Bw2Z9ZU/+1XqtwUdhzhUZuOc9QwgYCRgDBYiQ4QmCYAMJlmE86t6GZbM3CRcEdC+VYfnqAkAqBfAIIlnxWlISACCBcPOOgodls7cJl8yHo+RQ0FGbPpwCbiQQQLBMBYt4sgZ5bdrM88jre0IzWgnBR0OOQxtd5A4NSEMgj0MrnKo8GpSCwHwGEy368Tko3NKu1dIO1sNrRMzSwgUAuAVZccklRDgLnCSBczvPIu1rBzGY3zVLHPHDLL7WC0C4fMh6eI2CfwXOJiQv9tWH9ddxwt99wUnGdh3k6l83QFpfXtW3Wnl0PHVVWvxulv9Qb1jFkQx4EvAQQLh5yzG4ealXYENoqwrRKJ8cEjP0ukZXTMfwJAJ2HeTqXTd8mgRGX188D2Cbb8NrSw6MES8ov2YU/rhnacA6BqQQQLh6CzG4ealXYENoqwrRqJ01MxJ2UGNAuoWC7VjlsMwFheTraj1NamfBoQicsH/5ApdLHhIvKmECSUJEYUptKk+3Yik/oD+cQyCWAcMklFZZb4exmN8t9jiGStZyvMLRrCU1z/dBn0TYJAF2HwsLy7GjCxq7HjqpLdfaJi1i42KMgK69r2afEjdU9JJzG/CMfAn0Ezj4ZfSVI3yUQ3FB2M0mpmQChrTl66/BdYkB7uGk1w0SCCZQrV66ERTYCwvJ0vHjx4rn8+CJcLVH5WBSFwkV1qX2l2WbiJNVO6K+V5wiBUgTOfzpK1br2eqKbytq721L/CG1L0V5WX1OCxTwMH+tIKEhoqPzVq1c3Rex9FRMsJkpSosLqVFntWhUxERIKExMutrIS5qkOswnfs7G6Q38sjSMEShFAuHhIMrt5qFVhQ2irCNOqnBwSLGFHJQZsk2CJV0DCfH3DyISJ2cRHPfK5ffv2NtnEjtVj1+Zf+D6NjEzQpISLrbjEqzjbxjiBwAQCCBcPvJXPbnajio8eVLXZrDy0tYVj1f7a58vbSQmTeBUkrEt5KpO72eOgWLiYANIx/Pq16u3zwV7QlYBhg0BpAggXD1FmNw+1KmwIbRVhqt5JiZZ9Nq1cSCSYELAVF1vR0OqH8m31I7XiIkFiokSrLSpv9vLFVljs5VsTPrKx1ZX4ZdtUeiptn75SFgJjBPb79IzV1kr+njedVrCsoZ+Edg1RrKMP+6y46EVclbcVDh21m8jQIx9dq4wJDp1LRNhmNnZtQkVHOw+FidUTlg/bNDFl/dC1vYtjvqo8GwRKE0C4eIgyu3moVWFDaKsI06qctIl/rFMSLyYmdLTVF7PTtYkJ5YeiRWWUp902iR0JFRM08Yu8ygvLa5VH9Vo55evadl2rTbvWMbS3djlCYCoBhIuHILObh1oVNoS2ijCt0slcAbPKztMpCOxBAOGyB6xtUWa3LYq1nRDatUW0vv4gYOqLGR7PSwDh4uHN7OahVoUNoa0iTE04KQHDBgEI7BLgk7HLZDyFG8o4o0pLqRBTLgAABoZJREFUENpKA7cit1lxWVEw6cpBCCBcPFiZ3TzUqrAhtFWEaZVOIlhWGVY6dQACCBcPVGY3D7UqbAhtFWFalZMIllWFk87MQADh4oHM7OahVoUNoa0iTKtwEsGyijDSiSMQQLh4oDO7eahVYUNoqwhT9U4iWqoPIR04IgGEiwc+s5uHWhU2hLaKMK3GSQTMakJJR2YkgHDxwGZ281CrwobQVhGm1TkpAcMGAQjkEeDTksfpfCluMud5rOmK2K4pmtX0BeFSTahwdAEEEC6eIDC5eajVYUNs64jTyrxEuKwsoHTnoAQQLh68TG4eanXYENs64rQyLxEuKwso3TkoAYSLBy+Tm4daHTbEto44rcxLhMvKAkp3DkoA4eLBy+TmoVaHDbGtI04r8xLhsrKA0p2DEkC4ePAyuXmo1WFDbOuI08q8RLisLKB056AEEC4evExuHmp12BDbOuK0Mi8RLisLKN05KAGEiwcvk5uHWh02xLaOOK3MS4TLygJKdw5KAOHiwcvk5qFWhw2xrSNOK/MS4bKygNKdgxJAuHjwanJjXy8Dz5jABgITCCBcJsDDtDkCCJfmQk6HIQCBxRFgpW9xIcGh5RJAuCw3NngGAQi0QgDh0kqk6WcBAgiXAhCpAgIQgMAkAgiXSfgwbosAwqWteNNbCEBgiQQQLkuMCj4tlADCZaGBwS0IQKAhAgiXhoJNV6cSQLhMJYg9BCAAgakEEC5TCWLfEAGES0PBpqsQgMBCCSBcFhoY3FoiAYTLEqOCTxCAQFsEEC5txZveTiKAcJmED2MIQAACBQggXApApIpWCCBcWok0/YQABJZLAOGy3Njg2eIIIFwWFxIcggAEWiPAn/xvLeL0dwoBhMsUethCAAIQKEAA4VIAIlU0QwDh0kyo6SgEILBUAgiXpUYGv5ZIAOGyxKjgEwQg0BQBhEtT4aazEwkgXCYCxBwCEIDAVAIIl6kEsW+JAMKlpWjTVwhAYJEEEC6LDAtOLZQAwmWhgcEtCECgHQIIl3ZiTU+nE0C4TGdIDRCAAAQmEUC4TMKHcWMEEC6NBZzuQgAC8xGQICm5z+c5LUFguQQQLsuNDZ5BAAIQgAAEIBARQLhEQLiEAAQgAAEIQGC5BBAuy40NnkEAAhCAAAQgEBFAuERAuIQABCBwCALed10O4Qt1QqBmAgiXmqOH7xCAAAQgAIHGCCBcGgs43YUABCAAAQjUTADhUnP08B0CEKiWQN+jo2o7hOMQmIkAwmUm0DQDAQhAAAIQgMB0AgiX6QypAQIQgAAEIACBmQggXGYCTTMQgAAEIAABCEwngHCZzpAaIAABCEAAAhCYiQDCZSbQNAMBCEAAAhCAwHQCCJfpDKkBAhCAAAQgAIGZCCBcZgJNMxCAAAQgAAEITCeAcJnOkBogAAEIQAACEJiJAMJlJtA0AwEIQAACEIDAdAIIl+kMqQECEIAABCAAgZkIIFxmAk0zEIAABCAAAQhMJ4Bwmc6QGiAAAQhAAAIQmIkAwmUm0DQDAQhAAAIQgMB0AgiX6QypAQIQgAAEIACBmQggXGYCTTMQgAAEIAABCEwngHCZzpAaIAABCEAAAhCYiQDCZSbQNAMBCEAAAhCAwHQCCJfpDKkBAhCAAAQgAIGZCCBcZgJNMxCAAAQgAAEITCeAcJnOkBogAAEIQAACEJiJAMJlJtA0AwEIQAACEIDAdAIIl+kMqQECEIAABCAAgZkIIFxmAk0zEIAABCAAAQhMJ4Bwmc6QGiAAAQhAAAIQmIkAwmUm0DQDAQhAAAIQgMB0AgiX6QypAQIQgAAEIACBmQggXGYCTTMQgAAEIAABCEwngHCZzpAaIAABCEAAAhCYiQDCZSbQNAMBCEAAAhCAwHQCCJfpDKkBAhCAAAQgAIGZCCBcZgJNMxCAAAQgAAEITCeAcJnOkBogAAEIQAACEJiJAMJlJtA0AwEIQAACEIDAdAIIl+kMqQECEIAABCAAgZkIIFxmAk0zEIAABCAAAQhMJ4Bwmc6QGiAAAQhAAAIQmIkAwmUm0DQDAQhAAAIQgMB0AgiX6QypAQIQgAAEIACBmQggXGYCTTMQgAAEIAABCEwngHCZzpAaIAABCEAAAhCYiQDCZSbQNAMBCEAAAhCAwHQCCJfpDKkBAhCAAAQgAIGZCCBcZgJNMxCAAAQgAAEITCeAcJnOkBogAAEIQAACEJiJAMJlJtA0AwEIQAACEIDAdAL/DyRyrnzp7lPeAAAAAElFTkSuQmCC

290399937 发表于 2022-9-14 13:22

我猜可能是要检测2路电压,这2路被测对象可能有上下级联。既然已经不共地,其中一路测量做隔离运放,一路正常检测。是否能解决?

fzyuan 发表于 2022-9-14 19:12

光电继电器,采样保持
页: [1]
查看完整版本: 运放问题