驱动RFID-RC522模块
S50(M1)卡介绍1.S50(M1)卡基础知识1.每张卡有唯一的序列号,32位2.卡的容量是8Kbit的EEPROM
3.分为16个扇区,每个扇区分为4块,每块16个字节,以块为存取单位
4.每个扇区都有独立的一组密码和访问控制2.内部信息扇区0的块0用来固化厂商代码;每个扇区的块3作为控制块,存放:密码A(6字节)、存取控制(4字节)、密码B(6字节)
每个扇区的块0、1、2作为数据块,其作用如下:1.作为一般的数据存储,可以对其中的数据进行读写操作2.用作数据值,可以进行初始化值、加值、减值、读值操作
3.存取控制每个扇区的密码和存取控制都是独立的,存取控制是4个字节,即32位(在块3中)。每个块都有存取条件,存取条件是由密码和存取控制共同决定的。
每个块都有相应的三个控制位,这三个控制位存在于存取控制字节中,相应的控制位决定了该块的访问权限,控制位如图:
就是说,每个扇区的所有块的存取条件控制位,都放在了该扇区的块3中,如图:
数据块的存取控制
对数据块,与就是块0、1、2的存取控制是由对应块的控制位来决定的:
从表中得知:对数据块的存取控制,由于存取控制由三个控制位所决定,所以相应的访问条件就产生了9种。
要想对数据块进行操作,首先要看该数据块的控制位是否允许对数据块的操作,如果允许操作,再看需要验证什么密码,只有验证密码正确后才可以对该数据块执行相应操作。
一般密码A的初始值都是0xFF…
控制块的存取控
块3(控制块)的存取操作与数据块不同,如图:
工作原理
电气部分:
卡片的电气部分由一个天线和一个ASIC组成。
天线:就是几组绕线的线圈,体积小,已经封装在卡片内
ASIC:ASIC即专用集成电路,是指应特定用户要求和特定电子系统的需要而设计、制造的集成电路。 目前用CPLD(复杂可编程逻辑器件)和 FPGA(现场可编程逻辑阵列)来进行ASIC设计是最为流行的方式之一,它们的共性是都具有用户现场可编程特性,都支持边界扫描技术,但两者在集成度、速度以及编程方式上具有各自的特点,这样理解,ASIC就是卡片特点的一个集成电路。
卡片的ASIC包含了一个高速(106KB)的RF接口、一个控制单元、一个8K的EEPROM
工作过程:
读卡器会向M1卡发送一组固定频率的电磁波,卡片内有一个LC串联谐振电路,其工作频率与读卡器发送的电磁波频率相同,遂在电磁波的激励下,LC串联谐振电路会发生共振,从而使电容内产生电荷,在电容的另一端接有一个单向导电的电子泵,电子泵将产生的电荷转移到另一个电容中存储。当存储电容中的电荷达到2V的时候,此时电容就作为电源为其他电路提供工作电压,所以卡片就可以向读卡器发送数据,或者从读卡器接收数据,实现了读卡器与卡片的通信。 M1与读卡器的通信
通信的流程图如示:
复位应答(Request)
M1卡的通信协议和通信波特率是定义好的,当有卡片进入读卡器的工作范围时,读卡器要以特定的协议与卡片通信,从而确定卡片的卡型。
防冲突机制(Anticollision Loop)
当有多张卡片进入读写器操作范围时,会从中选择一张卡片进行操作,并返回选中卡片的序列号。
选择卡片(Select Tag)
选择被选中的卡的序列号,并同时返回卡的容量代码。 三次相互确认(3 Pass Authentication)
选定要处理的卡片后,读写器就要确定访问的扇区号,并且对扇区密码进行密码校验。在三次互相认证后就可以通过加密流进行通信。每次在选择扇区的时候都要进行扇区的密码校验。 对数据块的操作
读(Read):读一个块的数据;
写(Write):在一个块中写数据;
加(Increment):对数据块中的数值进行加值;
减(Decrement):对数据块中的数值进行减值;
传输(Transfer):将数据寄存器中的内容写入数据块中;
中止(Halt):暂停卡片的工作;
RC522工程代码详解
1.RC522与M1通信
用户通过单片机初始化RC522,然后通过单片机控制RC522与M1通信,那单片机是怎样与RC522通信的呢?
RC522通过SPI接口与单片机(STM32)通信,单片机向RC522内的寄存器写入特定的指令,RC522会根据寄存器中的值来执行相关操作,并与M1通信。所以要控制RC522,就必须了解RC522的寄存器和一些相关指令,这些东西厂家都会提供,所以我们只需要复制粘贴到我们的工程中使用即可。下面分享一下相关寄存器的地址和指令: /
//RC522命令字
/
#define PCD_IDLE 0x00 //取消当前命令
#define PCD_AUTHENT 0x0E //验证密钥
#define PCD_RECEIVE 0x08 //接收数据
#define PCD_TRANSMIT 0x04 //发送数据
#define PCD_TRANSCEIVE 0x0C //发送并接收数据
#define PCD_RESETPHASE 0x0F //复位
#define PCD_CALCCRC 0x03 //CRC计算
/
//Mifare_One卡片命令字
/
#define PICC_REQIDL 0x26 //寻天线区内未进入休眠状态
#define PICC_REQALL 0x52 //寻天线区内全部卡
#define PICC_ANTICOLL1 0x93 //防冲撞
#define PICC_ANTICOLL2 0x95 //防冲撞
#define PICC_AUTHENT1A 0x60 //验证A密钥
#define PICC_AUTHENT1B 0x61 //验证B密钥
#define PICC_READ 0x30 //读块
#define PICC_WRITE 0xA0 //写块
#define PICC_DECREMENT 0xC0 //扣款
#define PICC_INCREMENT 0xC1 //充值
#define PICC_RESTORE 0xC2 //调块数据到缓冲区
#define PICC_TRANSFER 0xB0 //保存缓冲区中数据
#define PICC_HALT 0x50 //休眠
/* RC522FIFO长度定义 */
#define DEF_FIFO_LENGTH 64 //FIFO size=64byte
#define MAXRLEN18
/* RC522寄存器定义 */
// PAGE 0
#define RFU00 0x00 //保留
#define CommandReg 0x01 //启动和停止命令的执行
#define ComIEnReg 0x02 //中断请求传递的使能(Enable/Disable)
#define DivlEnReg 0x03 //中断请求传递的使能
#define ComIrqReg 0x04 //包含中断请求标志
#define DivIrqReg 0x05 //包含中断请求标志
#define ErrorReg 0x06 //错误标志,指示执行的上个命令的错误状态
#define Status1Reg 0x07 //包含通信的状态标识
#define Status2Reg 0x08 //包含接收器和发送器的状态标志
#define FIFODataReg 0x09 //64字节FIFO缓冲区的输入和输出
#define FIFOLevelReg 0x0A //指示FIFO中存储的字节数
#define WaterLevelReg 0x0B //定义FIFO下溢和上溢报警的FIFO深度
#define ControlReg 0x0C //不同的控制寄存器
#define BitFramingReg 0x0D //面向位的帧的调节
#define CollReg 0x0E //RF接口上检测到的第一个位冲突的位的位置
#define RFU0F 0x0F //保留
// PAGE 1
#define RFU10 0x10 //保留
#define ModeReg 0x11 //定义发送和接收的常用模式
#define TxModeReg 0x12 //定义发送过程的数据传输速率
#define RxModeReg 0x13 //定义接收过程中的数据传输速率
#define TxControlReg 0x14 //控制天线驱动器管教TX1和TX2的逻辑特性
#define TxAutoReg 0x15 //控制天线驱动器的设置
#define TxSelReg 0x16 //选择天线驱动器的内部源
#define RxSelReg 0x17 //选择内部的接收器设置
#define RxThresholdReg 0x18 //选择位译码器的阈值
#define DemodReg 0x19 //定义解调器的设置
#define RFU1A 0x1A //保留
#define RFU1B 0x1B //保留
#define MifareReg 0x1C //控制ISO 14443/MIFARE模式中106kbit/s的通信
#define RFU1D 0x1D //保留
#define RFU1E 0x1E //保留
#define SerialSpeedReg 0x1F //选择串行UART接口的速率
// PAGE 2
#define RFU20 0x20 //保留
#define CRCResultRegM 0x21 //显示CRC计算的实际MSB值
#define CRCResultRegL 0x22 //显示CRC计算的实际LSB值
#define RFU23 0x23 //保留
#define ModWidthReg 0x24 //控制ModWidth的设置
#define RFU25 0x25 //保留
#define RFCfgReg 0x26 //配置接收器增益
#define GsNReg 0x27 //选择天线驱动器管脚(TX1和TX2)的调制电导
#define CWGsCfgReg 0x28 //选择天线驱动器管脚的调制电导
#define ModGsCfgReg 0x29 //选择天线驱动器管脚的调制电导
#define TModeReg 0x2A //定义内部定时器的设置
#define TPrescalerReg 0x2B //定义内部定时器的设置
#define TReloadRegH 0x2C //描述16位长的定时器重装值
#define TReloadRegL 0x2D //描述16位长的定时器重装值
#define TCounterValueRegH 0x2E
#define TCounterValueRegL 0x2F //显示16位长的实际定时器值
// PAGE 3
#define RFU30 0x30 //保留
#define TestSel1Reg 0x31 //常用测试信号配置
#define TestSel2Reg 0x32 //常用测试信号配置和PRBS控制
#define TestPinEnReg 0x33 //D1-D7输出驱动器的使能管脚(仅用于串行接口)
#define TestPinValueReg 0x34 //定义D1-D7用作I/O总线时的值
#define TestBusReg 0x35 //显示内部测试总线的状态
#define AutoTestReg 0x36 //控制数字自测试
#define VersionReg 0x37 //显示版本
#define AnalogTestReg 0x38 //控制管脚AUX1和AUX2
#define TestDAC1Reg 0x39 //定义TestDAC1的测试值
#define TestDAC2Reg 0x3A //定义TestDAC2的测试值
#define TestADCReg 0x3B //显示ADCI和Q通道的实际值
#define RFU3C 0x3C //保留
#define RFU3D 0x3D //保留
#define RFU3E 0x3E //保留
#define RFU3F 0x3F //保留
/* 和RC522通信时返回的错误代码 */
#define MI_OK 0x26
#define MI_NOTAGERR 0xcc
#define MI_ERR 0xbb
既然RC522是通过SPI与单片机通信的,所以就会有相应的引脚配置,下面给出相关引脚的配置和一些引脚操作宏定义:
/* RC522引脚连接说明(SPI1的引脚) :
CS:PA4( 接的SDA引脚 )
SCK:PA5
MISO:PA6
MOSI:PA7
RST:PB0
*/
void RC522_GPIO_Init( void )
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB, ENABLE );
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_Init( GPIOA, &GPIO_InitStructure );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_Init( GPIOA, &GPIO_InitStructure );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_Init( GPIOA, &GPIO_InitStructure );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_Init( GPIOB, &GPIO_InitStructure );
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_Init( GPIOA, &GPIO_InitStructure );
}
/* IO口操作函数 */
#define RC522_CS_Enable() GPIO_ResetBits ( GPIOA, GPIO_Pin_4 )
#define RC522_CS_Disable() GPIO_SetBits ( GPIOA, GPIO_Pin_4 )
#define RC522_Reset_Enable() GPIO_ResetBits( GPIOB, GPIO_Pin_0 )
#define RC522_Reset_Disable() GPIO_SetBits( GPIOB, GPIO_Pin_0 )
#define RC522_SCK_0() GPIO_ResetBits( GPIOA, GPIO_Pin_5 )
#define RC522_SCK_1() GPIO_SetBits( GPIOA, GPIO_Pin_5 )
#define RC522_MOSI_0() GPIO_ResetBits( GPIOA, GPIO_Pin_7 )
#define RC522_MOSI_1() GPIO_SetBits( GPIOA, GPIO_Pin_7 )
#define RC522_MISO_GET() GPIO_ReadInputDataBit( GPIOA, GPIO_Pin_6 )
我是通过软件模拟SPI与RC522通信的,SPI发送接收字节的代码如下(高位先行):
/* 软件模拟SPI发送一个字节数据,高位先行 */
void RC522_SPI_SendByte( uint8_t byte )
{
uint8_t n;
for( n=0;n<8;n++ )
{
if( byte&0x80 )
RC522_MOSI_1();
else
RC522_MOSI_0();
Delay_us(200);
RC522_SCK_0();
Delay_us(200);
RC522_SCK_1();
Delay_us(200);
byte<<=1;
}
}
/* 软件模拟SPI读取一个字节数据,先读高位 */
uint8_t RC522_SPI_ReadByte( void )
{
uint8_t n,data;
for( n=0;n<8;n++ )
{
data<<=1;
RC522_SCK_0();
Delay_us(200);
if( RC522_MISO_GET()==1 )
data|=0x01;
Delay_us(200);
RC522_SCK_1();
Delay_us(200);
}
return data;
}
单片机和RC522之间的通信基础机制就建立起来了,下一步就是建立在通信基础上的操作了。 STM32对RC522寄存器的操作
上面说了,单片机是向RC522的寄存器操作来驱动RC522的,所以会有这几种基本操作:
读取RC522指定寄存器的值
向RC522指定寄存器中写入指定的数据
置位RC522指定寄存器的指定位
清位RC522指定寄存器的指定位 下面给出这些操作的函数实现:
/**
* @brief:读取RC522指定寄存器的值
* @param:Address:寄存器的地址
* @retval :寄存器的值
*/
知道了对RC522寄存器的操作,就可以结合相关的指令,对RC522写入指令控制RC522了,下面接收一下RC522的基本操作。
uint8_t RC522_Read_Register( uint8_t Address )
{
uint8_t data,Addr;
Addr = ( (Address<<1)&0x7E )|0x80;
RC522_CS_Enable();
RC522_SPI_SendByte( Addr );
data = RC522_SPI_ReadByte();//读取寄存器中的值
RC522_CS_Disable();
return data;
}
/**
* @brief:向RC522指定寄存器中写入指定的数据
* @param:Address:寄存器地址
data:要写入寄存器的数据
* @retval :无
*/
void RC522_Write_Register( uint8_t Address, uint8_t data )
{
uint8_t Addr;
Addr = ( Address<<1 )&0x7E;
RC522_CS_Enable();
RC522_SPI_SendByte( Addr );
RC522_SPI_SendByte( data );
RC522_CS_Disable();
}
/**
* @brief:置位RC522指定寄存器的指定位
* @param:Address:寄存器地址
mask:置位值
* @retval :无
*/
void RC522_SetBit_Register( uint8_t Address, uint8_t mask )
{
uint8_t temp;
/* 获取寄存器当前值 */
temp = RC522_Read_Register( Address );
/* 对指定位进行置位操作后,再将值写入寄存器 */
RC522_Write_Register( Address, temp|mask );
}
/**
* @brief:清位RC522指定寄存器的指定位
* @param:Address:寄存器地址
mask:清位值
* @retval :无
*/
void RC522_ClearBit_Register( uint8_t Address, uint8_t mask )
{
uint8_t temp;
/* 获取寄存器当前值 */
temp = RC522_Read_Register( Address );
/* 对指定位进行清位操作后,再将值写入寄存器 */
RC522_Write_Register( Address, temp&(~mask) );
}
STM32对RC522的基础通信
上面说了寄存器、指令、对寄存器的操作,这里介绍一些对RC522的基本操作,包括:
开启天线
关闭天线
复位RC522
设置RC522工作方式
页:
[1]
2