地瓜patch 发表于 2025-1-21 20:58

ADC部分描述中的Rain是一个什么参数?

表 4-35 fADC=15MHz(1)时的最大 Rain,这个电阻是什么参数?

***u/6jNnLxOpC9kFmtvTlD7YcIcUT+6TxNNvvp3IwjOYjuVX2VtxvIxkD/+tuEUrBxqS+w8pr+58XxJ16sJnITk5m9xcplNsIRHJkmhh7/Y0dseD6gvXqW+LKXnVUGrfYSLtljy2uXQfBVi50DeJMmrKmmqcNTwJnZztRi7TY6k81BdS7/Zj6VGoy0j2KLjp1sqBZOj+Q411xf/mS50sPCn4WH7VcZKpNLW5spYn7cK+bC+MeM9E6SpLyDmAL33exXKdr7B/7zfwbFNNkyUpOLr7NLLkFf/XNIKZiS5Kiovr49TZMyvDlV27EJ+wAj5ttKGt3xPBF7KxwdcI/X/OUC5aY99KUJi4A2v3X6tYUNYcDqOHw+VeMpJu84wKUxFlV7BrVzwSVvigjbY29HsG40L2Bvga9cfPGYVIObobpx8FN4zMTKBbUs24JeTgwJc+eHe5Dr7avxffeLZRp2nVJkFN+kvAnZMnke70BjwMHtssT8ZyvwnY020lYjYGoLvSPTklyM1IR3YRANlFrJoyFgv35EEAIL8RjcgThujn1aVeW8HqShdui5Mglcshl8shL01EsGs7+G8tQNwsW9Stbx2Aa1GYO+1H7M0TAMhxY/texJs4w7UDz30zFaHrhsVJ0vI4l8tRmhgM13b+2FoQh1m2Ai6umoKxC/egPIRvIDryBAz7eQEASnIzkJ5dBECO5OV+mLCnG1bGbESA8kDIGgk1SdZypKdlwcDWDm0fa5H075VYHpeLlLUfoqOeNrS1taGt3Rxvr84FpHGY79kbn+8vAYxHYNFPHjg3xRnO/dzg6D4f4gnhCPZu3nBNYs+vjn3b+oP/YtnAeAS+9hr6uTnCfb4YE3//FgO421mjYIwRi36Cx7kpcHbuBzdHd8wXT0B4sDcAKeLme6L35/sB6d9YuTwOuSlr8WFHvYpxUBvN317d0A1gz6DW51k3JQpJFq6miaFv5QC7NlW/XEMV8aML66bmvhVQJLqK1Lt6sOpqh0bS7fWO40yFKSTI5lTMogAAF7FJREFUupoGsb4VHOzagENYPXGybuR4EGX1geOMsYalJtPgjDHGmPriZM0YY4ypOE7WjDHGmIrjZM0YY4ypOE7WjDHGmIqrdTW4hgY/cYgxxhh72Z7lDotanwbJt2uoNr6lhtUHjjPGGhZPgzPGGGMqjpM1Y4wxpuI4WTPGGGMqjpM1Y4wxpuI4WTPGGGMqrtbV4CqrNAMHwsOxPT4HMO2F9ycHYrCdvlIRRWY0FoTkYfiyqXDVBQAB4n82IXTdMdzUtMGggM8wonurqnUrRIiN2IizYqFigxbaewVgnLvxq24VqxMBeQdDsLLID/N9raAFPEOfPSUGpJmIiQhDdHw+WjoMQUDgEHRpoXxsld/L2Ksk5OFgyEoU+c2Hr1V5xClEsYjYeBaPQr09vAL84W6sCWlmDCLCohGf3xIOQwIQOKQLnvr0akUmoheEIG/4Mkx15ed1qbLGeWUtZOOviQMwaaccPX3eQnfpdkzynojIbOFRGcU1hAdORciWMxBVbJYnLYPv8KW4bu2Bvsb/YN5gP/yeoahavyQWoXPW4PhNEUSi8p+8+7L6aRurhYCC0yHwGxeM3ZcLUXkzUR37rMYYEO5ge6A3xm9TwPnNfmh9+gv4jFmLTEUtv5exV0UowOkQP4wL3o3/b+/e42M41wCO/7K7ya5cRJLGXUhUK3VN41ata6WoVs8W1ZK4laoWp/SirZbiVLWHnkP0iqJaNMEKSRVVd1K0EiU3BBG5kotsNrub2ZnzRxKSSCJ1ShPe7+fjD2Nm3ved9zHPzDvzzv6Rcz3i8n5Zyrvf7CfpUkmsZ3K1EOQMAy/3GcMmmx+PP1qPw28GELjyAhWc4YrZSPj6ZSZ9EkrkJbnStYSaoXbeWefsYuO+B5nx6ye80kQFwzuSc+hRQnaZeD7QGZCICZ7Ml+Y2+Fy7/bFw4KuvSB2ygp9e74GWIXheaMOslVFMmOdfZvfWmGjimw1hVfB8OtfOI3SXsnBsyXBGL83Gq1ldSn+up3p9VkUMzDRxKqsvc5bPZ5y3Grl7Fjs7hLGvYCxBzpWXKwi3heUYS4aPZmm2F83qlol0YqLjaTZkFcHzO5c5gZv3nyKr7xyWzx+Ht1qme9ZOOoTto2BsEM4VFCHFBDP5SzNtfMQYUW1QO++s3QMJSd7O5CbF1c87w9l0V+o3sAfAEr2IyWu8mTevD64lLZRT+f3EZdp09kMLgCOd/FtxPiq63M5lsk+cJK1uLrtmTmTchDf4NOIspjvTMqFKCuoWI/kuchtTO9YptbyafVZVDOh68F7YcsZ5S2SdO0Lof0NI**H/rqqyhWE20RR02Lkd0Rum0rZUM/mxMk06ubuYubEcUx441MizhZFuq7He4QtH4e3lMW5I6H8NySRh3v4o6to/5ZoFk1eg/e8efRxrZ1p4F5T+3tJSuT7V6ez3fdNXuujBfNRFkwOoc2CBTzpVqp5cg45eU7Ucy25FlVR19UF5WpOuR0WEnPyNHLWZQp8etDnIRMbxvciaPWFO9UioVI6/AYPw8+9/J1ANfusOjGQFcprA4bwyvJk2vbviqeqqnIF4TbR+TF4mB83hnoMJ0/LZF0uwKdHHx4ybWB8ryBWX39eQ1boawwY8grLk9vSv6tnBSd5M0cXTCakzQIWPOl2FySBe0PtHuQ1RvHFmGF8eDmIdRsn0Vpj5NCsKWzttJBdAW5wqvTKatQqGUm6vkSWbCj22nI71dJnaTyZkgaNBmAEfbWnafPVOhj99m1vknArqttn1YgB90C+jQ/EFPslL/R7gbfbxLLiqYoGEQXhb6Dtw9L4TCSNpujkPaIv2tNt+GrdWUa//QAA7oHfEh9oIvbLF+j3wtu0iV1B6RA2HprLlK2dWLgrALeyJ0mhBqu1F1Vy2k+8FTCIxfYz2BYxm14eKrCeYsuW40QFB+Ch0aDr8AHHUtcwxK0nC5Ma0qyRidSUHIpepbBx8VIGzk2alttzHvG7t3L4YskZXYVbA08cTPl3tH3Cn1HNPtM0qTQG5JxoNq/cRkLxDYqj70j0/rnEnEy5c80QhJvJi2f31sNcD3U3Gng6YMrPIyd6Myu3JRS/UOaI70g9/rkxnEwp/YqZlVNbtnA8KpgADw0aXQc+OJbKmiFu9FyYeMebI1Rf7UzWUgyLR4wlvO1n7PpuPO1K5iY4dGXBSQuSJCFJEuboD+jUKIiN2ft4w8edXo/7cXLDWuIsgPE31ocl0y3gEQBM6YmcTTUChfz+xURGzQ0nUwak82xYfwDXR3v/TY0Vbq7qPrvet66VxoCKBEJmvsrHEZkU7cJAxHFP/DqVv5gThL9R4e98MXEUc8NL4nQD6w+48mhvX0gIYearHxNR9J+A84YIjnv60ampGjCRnniWVKMDXRecxFJ8jpTM0XzQqRFBG7PZ94bP39w4oUpKLWT++RWludpOUanVivranzpK/y/SyqxXeHKu0rnxKGVzQfGCvF+Vj5/wUhq08lf8fRopDzy/XIm1KIqimJVtE5oqbsNDiraLW6UEPVRfadK+u9KlVUPFq+8s5ZcM2x1tY3XV0i78P5mVH8d7Kf6zo5XC4iWV91nZvq08BiQlcf0Exa9RU6VD9y5Kq4ZeSt9Zu5Sy3X5jufeKezPOagDzj8p4L39ldvS1SFfiVgUpD9VvorS/Fqe/FMWplKisn+CnNGraQenepZXS0KuvMmtXhmJTFEUxb1MmNHVThofkl91/4UllbufGyqhrJ0mhprrp71nffcxkJCSQ6dCMVi3cqPQzALY8LsadIUvnhW9Lj8rX+5uJny4spdp9VnkMyMZLxJ2+gtarNS09amqv33kizmoWW95F4s5kofPyLRenMsZLcZy+osWrdUtECN897sFkfXcRJ1HhThBxJgh/r9r5zFoQBEEQ7iEiWQuCIAhCDSeStSAIgiDUcCJZC4IgCEINJ5K1IAiCINRwVb4Nbmcnfl9IEARBEG6HPzPDospvg4upGoIgCILw9xPD4IIgCIJQw4lkLQiCIAg1nEjWgiAIglDDiWQtCIIgCDWcSNY3ZWTX4n8RnmSrdA1r3F72nLMU/y2PU4cOk5CURNKF3wgL2U96uU2NCcc4eaXsQjllH5u2n8FYSRm22GDGT9vMhfQ0sktvKmcRe+oiUiXbVUjKJ99y89VulfGEgQ1Hcyr8N8veOQTO/oUsuep9SPn5FFUxh9BpY1keX70W2i5sYt7s9cSaq1lZKZrFE97lx4xKKiRnEnUohlxkMi+lUnLYLOlpZBdvIsX8xMbfrpTUAIulorpaObZ6IaEHjnDsnKmalRMEQShSe5K1nMn2BR+wsYqkebskHzpJzn3qSv/doamJkDHT+MkIyEb2zJ9L6PkUUpL2sPLzHdd/KL6Ys5c92ycN49Pj1mvL5Ct7+OLboxRWWIKNhLAdFHTqhip0Is/PDsVgMBT9CfkXr05ZR8K1MkxEr5jFf/ZlYss7wdY169loMGDYtJxPPlnOJsMmVsyewKSlv5J7C8ci78RWVq/dcL18w0YWj+lM32kr2VS8LPz3DLLOn+bKDfnPyrGIA7h07YL7tcizkXJoDyfzS69nYfebjzH0q3PY0GBKvoLkVr1QVTcfRJ+C1XwdeS2tEvf9fL74tbLWKmSnXUXtWsn+VR40vLCIUR9Gsnf2i7y91oDBEMpHL41nWUJRLEpnNmE4WtIBhRwPns7Cw+XLU8j8dS+xTu5Ez3yad/fdxqslQRDuOlVO3aox5GwOfzKC0R9k8fKT7zHE6/YWZ83LRXJxxREAFaoy081tpJxNwrWlN04li5z78vJb4FQHUHK46uCDf9dudFPS8HA9g1v5o6zrwKvvDGdrqfxgp1JTx7kudSqqkHSc9dHtmTytPtpVOhp3HIReX1Q7jEYidtXF51oZjnT4R1uWzdlDXs9hPB3Uvmix6QfGT7Vj8lvP4qh/lhdv8di4tH+a0e1LLTDtY/pCb8ZuHM2zDW9MeJYzOwmNzMHRSYNdwXFWRHrxZNedbAi1odaoARPJJ+JQTA/g268xagDrEXYkPsbUj71RY0JVer6/NZGfd2TT9Sl/XADpwm5C9mWic1Zz5ew5ND4tqddtAj2yI/jmkxhMzXxpoPHBw5gKuAI5HNoQQe59TYqOtXye5Nw0YvbvQasBMBP78yEaTpiNvrkaUNFw2Gzmn3YgcXFD2nZrRRNLfRy892Ns8Aszx8Si/4canVZbXEEdnZ9swFtvriVw6ySuHxI7nByd0Di0YPR7Y/g06hxWWtfYn14VBKFmqfnJ2nKMJcNHszTbi2Z178RHWmQufzuWCRkvML6jBigkOi0Nwg042QNyEhs+OcTAsHUEXjsTa/Dw9sbRDuTkvcTV78vLWsDigDp1L8sXmbFX+zH+tUF4Fd+g6/yGM6x0sXZ2XG+dhNWqwsGhaP/ZP35BhOoJJtuDrCiUn/1uU8qNNng8x9IlJc2xIavUt2kIxcbZbz5kTXo9Ol6VoYJkrb0/gMD7AaycWBCCz4zPeWVQHbZMGsqJlzbynp8W9GW3Me3fQmKrDuT9bMBAIdHpGZi3h2FwBsyZJCbrcHrEj0c8VGia92FEUNF2ll/nELjWns//8xSeyhk+HboCS6/JTO5ar9TerfzxQwTa/y5mkANg09DAxQ2vh9rQxh5QMjm25AdkDzUgEbNqDhFek5nWJosDZjtU6VtYsPJBXii+qjKqtdQvN+iibv0iy/7jgEv8Nr6LMuGkUwEyqVfS+S18M1ubm7HPiCHB1Jq2jn9BNwiCcNer+claUdNi5HdEDkpjhu/7d6RItVqDZ7uSu1cT+SEGeEqP3hGQjhO9IZNW7kUn4MzITfx0Pou9wZvp+NWHOK+7zJD3X8INQDuAj4Oz2HSpBW29m1DXzkTsTwai8q6ye2U0A4NfxLYnDtndGU3aaTIuWtlqsKLOi+bHI815Y9FYWiu/se5gFvW09rio4IpijzHuRzYs3Mr6lL6MeCQZlxY9i5Nx0f5/T9jDptRAVn3UC4c9MxkTOYyVr5Vuocxf8QTEdn41729rzdCWqdg1Smf/t7so7DOCvs3Kh5WR9ANLWZg8hAVvuQFmNHYu1PWwv3Gncgbhe1yZ+tF4ejkXtSl//fcY+z+Dvn5FdZbJSojH0sKXRp2eo2foDjJkcPl9F7axy5nR1YWLEcHs9BzFuC6ugAa1xgEnN088HQEpFa1Gi7OHJ55aQC7EUWuPvQZAw0PPdOKrmT8Rb3Xlsr0d9VVq6t7ngdYEBdhR9iN/FjLOxJOad5HfjuroP24ggb7F/2Q1cyljM1GNnkI/WPd/HXdBEO49NT9Z6/wYPAywbLtDBapQqVRU7x5ehWe3oQR1TiQzLArXvAI6Du3Kwa/nEty+A01VMpc2/ZvvfZbx87NFw+b1BozE13qIk9sLaN+iMy1f7AyALTaO1VHteVo/CB16nh0FkE9sRBL+U4fy+2wZi8lMvVFfsxooPHCQCM2jPPFkI/r3O0v4ugP0Gv4YvgNG0rJeLLsPNsERkBQLTu6NceAMUtpxwg0WYkI2o0xcxuze7reeso1HWTTzAH0XzkN6ezp26ib0GN6ZVdPH8E6/uXyg96FkYFjOjGD61Die3diPX9esQ66r4Y+kVNJ+3ozB5SI7wzLRL5pLQAMV5uPbyQt4leecKy7WevEMKR730+LaHalM4ppXmWs/ibHtNDR91IuErQYSFE9a2kUSZgBboSfOupJhcAX+zJf53J5h8dJ0Nn5/kFb2Crk2Gfs6jthV+I6YPWqbFewS2Byu48mhrhjCT5OZFEOaxYhNslGg5CDTsBa9LCIIQk1Q85P130BlJ5HyezgGtT1QSFRqaplh8LN5FZ3s1dR/uDvttPCA8TxrnAehbxfLnK8f5vXFXa4/3/5TnPAdpAfTWpZRQOLhnaRYHVCZj7Jkyioud3NgiWtP/BqqcHSvR24BeFRRkKahH0/pn+M5fdAt1eYaSywr3/kGp+nBjH8wny9Llmt9GfPvaSx4ejAjcrYQMtYHde4x1nx5lILGDWjYpBOPju4EmKmzcxNn+v0DvZcK/bXnATKWFoMIcpM5snE1Z6mLTlVIVFrJMHghFyN3kN55JnOHelMy+qzghPdjg9H31Zav6Y1kCcmayvFwAxp7QE7mdEYSdlsMmDQAuZxMt1C/9CZp2zlX2J0H5HBy8vLRedbHLr0Q6YYwUOHxYCc8TPE4OcnUde+EflQ7tk/ZgnHad7ym+ZzRnxzHykDEvbUgCH+GSNYVsqfxw09VMQy+scKtlOyjGI458kRAR67OW8fhqB0ceWQ677hXVo6NrCtXqefhVo06OeH7+DP4IXFq0fe0GDWERg2eoInRhF//QRU9LkZKv0iq9WZ3kTbO/fA6r4e35P0VU/C7yRtPctZR1i47TIPXg3myhQbk/LIrOPrzxmcTeG7RUYyj3UmOkug9fRRJ49dWo40qXD2KDlaXIaPpAtwwDK5/7ob65+XZc18Vb+uXLcKFgR8tw/PB5kUvEEon+OPbeLoM1tNfC2DlEf/+1NMB5HP2lxC+XboZ3tUjRypYEq9Sp9V9eNq1x1Vl5aDJirWysuQMLqVdv4BQNe7NgxmriDQPpLfD9XcJrGfCWbblDHb3P8Ergx+qXjsEQbin1OrROFN6ImdTK5uZfOvkP/0DJgqy8QiffXgM735tcNL6M6RhCM8scGbKNP9K3vg1E7fuUwxnVdXohOsvlZmjlxKcFcj7/VxRVPczsMUB3lsUSU65aVJSSgTBYRdxtL/ZgL5C3qV4ju7cR+xNZxPZSEupQ8AbU4sSdUndyh0uTet/smnZcFxV9WjTqxvNq3HDe+sKSM6pxwPe1b3udKR5SaIGQEGWS7+050BDr0bFd75OtOzVm7oWZ3x9XXji0zl4xKh4UPkF88AX6eHiy4iX+uNR0SFW8ji0LIQYtT0oJpL2byJ0N/Tvep4VoZfI2bODgxYAC/t/Saf31Ck8kX34lo+CIAh3t1qcrC3se78Xnaf91c+yZWRZwpSdQlJSEklJyeSYzeQkJxX9/WIGRqtM2dxoRed0P4P++RIddfnEb5rD7KiuzHvRwqLnJ/HvkIMkXLFc30bOJn3P5wSnBBDYxbVomSIj2SqZQ67ISJINKWUnn//YmGmzBuCh2JBsCvcNepugq+8S8EIwJd8hUfIuE7n/Mo+O7I5rRYnEGE1Y+CmKvhuioe0LYwh8aRwDbjpWr6Zx27Y0KHMTK2Ozycg3vb4p4Pz+MDYbDBgMWzmSlErMz5sxGAx8/6+RPDvzZyr7Lkl5lvhQvth8ruhDMLl7ia0/mACX6m17IxlFslFp0dIFktLV2Ktlru79hhNdpjC6R2P2/nMia1Ma8HC3ltSRy8VDvpHcA1+xUXHl4PTRfCv709m3J/qAdnQePwn3FS8zIzyu+ALBHl8fiR+XLiHkaqNbbYQgCHe52jMMrh3IsgsDSy9gwNcXyboNRcm6+3CzppGSUnR4Os2YAV**ADIuWjrN8C59GWO2pdXln/IkT3r+ToiHbvWo/hseUucgOcH/sCiD+cwK246H80YgLcW0D3GhPmfUffZjtdewlKsEsWvIN/IWoiiMnE87gFGzwjAQwUWyQ6VPSgqN3rN28KObAfcimcoafvMJGytGuPONWy2PExP18OEbVfo2VNhu8EAllwyTY1IsrThAa2ZMwkNefHdXqU+VPJnWLHZO6Cp8gNjVhSdJz7tHqOduwfOGtDrS01c0+sZCYDEhT0h7MvQ4VxqREAzUI/rgTAMxYskYw4q5TzJUjOsO9LoPmUClT5puCkJO6d6OFc2AKHxZuDYx7HsXsVW+XlmBbVEg8zLEx5htymfs1s+5I2Zv9Lhm1JzsFx7E/SmG13H90M14Cm8Wrhdvyp27cf8JYlMnBhJihnQqmjcbyJv9rvlBgiCcA+wU8SPVv8lbPl5WOq44HirYxWSFavKAYcKZydJSIoGjbrs+pLGoQZcbdmwWsHBoapnxhKSpEHzl1fWSGamCk/P/2eycnXqZkOS7NBoKu5ci9mCVvcnx/qtZsxqHbpqPmoXBOHeJpK1IAiCINRwtfiZtSAIgiDcG0SyFgRBEIQaTiRrQRAEQajhRLIWBEEQhBpOJGtBEARBqOH+B5MV8cTT9DerAAAAAElFTkSuQmCC

OKAKAKO 发表于 2025-1-22 17:31

表没有看到

小小蚂蚁举千斤 发表于 2025-1-22 22:24

麻烦楼主把表附录一下

cen9ce 发表于 2025-4-10 15:13

在ADC(模数转换器)的描述中,"Rain" 通常指的是 输入阻抗输入阻抗是ADC输入端口对输入信号的阻抗特性,影响信号采集的精度和稳定性。

zhizia4f 发表于 2025-4-10 16:18

高输入阻抗减少信号衰减,确保信号完整传输到ADC。

b5z1giu 发表于 2025-4-10 17:29

其实低输入阻抗可能导致信号衰减,影响测量精度。

q1ngt12 发表于 2025-4-10 18:48

一般来说,高输入阻抗减少对信号源的负载效应,避免信号源性能下降。

y1n9an 发表于 2025-4-10 20:03

我觉得低输入阻抗可能对信号源造成较大负载,影响信号质量。

suw12q 发表于 2025-4-10 21:24

这么理解,高输入阻抗更容易受到噪声和干扰影响,需采取屏蔽和滤波措施。低输入阻抗对噪声和干扰的敏感性较低。

w2nme1ai7 发表于 2025-4-11 08:39

SAR ADC,输入阻抗通常在几百千欧到几兆欧。Sigma-Delta ADC,输入阻抗较高,通常在几兆欧以上。

tax2r6c 发表于 2025-4-11 10:08

在信号源和ADC之间使用缓冲放大器(如运算放大器),减少信号衰减和负载效应。

q1d0mnx 发表于 2025-4-11 12:25

建议使用低通滤波器减少高频噪声。采取屏蔽措施防止电磁干扰。

l1uyn9b 发表于 2025-4-11 15:36

一般是根据信号源输出阻抗选择输入阻抗合适的ADC,确保信号完整性。

申小林一号 发表于 2025-4-24 18:19

学习一下
页: [1]
查看完整版本: ADC部分描述中的Rain是一个什么参数?