guanjiaer 发表于 2025-6-11 11:42

STM32控制电机

初始化时钟:在 STM32 的程序中,初始化系统时钟,一般会使用 RCC(Reset and Clock Control)相关函数来配置时钟。例如,对于 STM32F103 系列,可能会使用 RCC_APB2PeriphClockCmd 函数来使能 GPIO 和电机驱动芯片相关的时钟。
初始化 GPIO 引脚:配置连接到电机驱动芯片的 GPIO 引脚为输出模式。
电机正转控制:通过设置 GPIO 引脚的电平来控制电机正转。
电机反转控制:改变方向控制端的电平,使电机反转。
电机停止控制:关闭电机驱动芯片的使能端,使电机停止转动。

代码如下:

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file         : main.c
* @brief          : Main program body
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2025 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
*                        opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
#include "stdio.h"
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

TIM_HandleTypeDef htim3;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM3_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_NVIC_Init(void);
/* USER CODE BEGIN PFP */
       
#if 1
#pragma import(__use_no_semihosting)            
//标准库需要的支持函数               
struct __FILE
{
        int handle;

};

FILE __stdout;      
//定义_sys_exit()以避免使用半主机模式   
void _sys_exit(int x)
{
        x = x;
}
//重定义fputc函数


int fputc(int ch, FILE *f)
{
uint8_t temp = {ch};
HAL_UART_Transmit(&huart1, temp, 1, 1000);// huart1是串口1,如果使用其他串口需要更改这个变量
return ch;
}
#endif
/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */




uint16_tSinWave;

uint16_t index_test = 0;




/* USER CODE END 0 */

/**
* @briefThe application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU Configuration--------------------------------------------------------*/

/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */
SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM3_Init();
MX_USART1_UART_Init();

/* Initialize interrupts */
MX_NVIC_Init();
/* USER CODE BEGIN 2 */
        printf("init hal pwm test.");
                int i = 0;
               
               
        for(uint16_t i=0;i<1000;i++)
        {
                SinWave=500*sin(2*3.1415926f*i/1000)+500;
        }
               
        //设置占空比
        for(uint16_t i=0;i<1000;i++)
        {
                TIM3->CCR1=500;
                TIM3->CCR2=500;
                HAL_Delay(1);
               
        }       
       
        HAL_GPIO_WritePin(GPIOA,GPIO_PIN_7,GPIO_PIN_SET);
        HAL_GPIO_WritePin(GPIOA,GPIO_PIN_6,GPIO_PIN_RESET);
       
       
                        HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);//使能定时器4通道1
                        HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2);//使能定时器4通道2
        while(1)
        {
                index_test++;
                if(index_test < 1000)
                {
                        HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);//使能定时器4通道1
                        HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_2);//使能定时器4通道1
                        HAL_GPIO_WritePin(GPIOA,GPIO_PIN_7,GPIO_PIN_RESET);
                        HAL_GPIO_WritePin(GPIOA,GPIO_PIN_6,GPIO_PIN_SET);
                        HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);//使能定时器4通道1
                        HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2);//使能定时器4通道2
                        HAL_Delay(1);                       
                printf("反转");
                }               
                else
                {
                                if(index_test == 2000)
                                {
                                        index_test =0;
                                }

                                        HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);//使能定时器4通道1
                        HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_2);//使能定时器4通道1
                                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_7,GPIO_PIN_SET);
                                HAL_GPIO_WritePin(GPIOA,GPIO_PIN_6,GPIO_PIN_RESET);
                        HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);//使能定时器4通道1
                        HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2);//使能定时器4通道2

                        HAL_Delay(1);
                                printf("正转");
                }
               

        }               
       
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
       
//for(index = 0; index < 10; index++)
//{
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
//}

//#include "string.h"
//while(1)
//{


//        printf("TIM3= %d\r\n",TIM3->CNT);
//       
//       
//}

        printf("done");
/* USER CODE END 3 */
}

/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

/** Supply configuration update enable
*/
HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);
/** Configure the main internal regulator output voltage
*/
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 100;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
    Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;

if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
    Error_Handler();
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_USART1;
PeriphClkInitStruct.Usart16ClockSelection = RCC_USART16CLKSOURCE_D2PCLK2;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
    Error_Handler();
}
}

/**
* @brief NVIC Configuration.
* @retval None
*/
static void MX_NVIC_Init(void)
{
/* TIM3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(TIM3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(TIM3_IRQn);
}

/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{

/* USER CODE BEGIN TIM3_Init 0 */

/* USER CODE END TIM3_Init 0 */

TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};

/* USER CODE BEGIN TIM3_Init 1 */

/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 400-1;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 1000-1;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
    Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
    Error_Handler();
}
if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
{
    Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
    Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_TOGGLE;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
    Error_Handler();
}
sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
    Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */

/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);

}

/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{

/* USER CODE BEGIN USART1_Init 0 */

/* USER CODE END USART1_Init 0 */

/* USER CODE BEGIN USART1_Init 1 */

/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
    Error_Handler();
}
if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
{
    Error_Handler();
}
if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
{
    Error_Handler();
}
if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
{
    Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */

}

/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};

/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();

/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET);

/*Configure GPIO pin : PA0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF1_TIM2;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

/*Configure GPIO pin : PA4 */
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
//void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
//{
//        if(huart->Instance == USART1)
//        {
//                HAL_UART_Receive_IT(&huart1,(uint8_t*)&rx,sizeof(rx));
//        }
//}
/* USER CODE END 4 */

/**
* @briefThis function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */

/* USER CODE END Error_Handler_Debug */
}

#ifdefUSE_FULL_ASSERT
/**
* @briefReports the name of the source file and the source line number
*         where the assert_param error has occurred.
* @paramfile: pointer to the source file name
* @paramline: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
   tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/




————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

原文链接:https://blog.csdn.net/u011046042/article/details/147998810

页: [1]
查看完整版本: STM32控制电机