-
GD32F103 USART输出波形中停止位宽度错误
[i=s] 本帖最后由 wanp 于 2024-3-19 19:37 编辑 [/i] USART0 发送数据,输出波形,发现停止位宽度错误。应该如何解决。 使用GD32F103 官方库文GD32F10x_Firmware_Library_V2.3.0中的例程验证 波特率115200,无校验 实测 结果如下: 设置0.5位停止,实际波形有2位停止位宽度 设置1位停止,实际波形有2位停止位宽度 设置1.5位停止,实际波形有3位停止位宽度 设置2位停止,实际波形有3位停止位宽度 使用波特率115200时,位宽应该为8.6us 图一 配置1位停止位的实际波形,停止位变成2位宽了 [img]**Ql4EydOxOuvv46pU6eK4CdW8099Sv1L/UxBF7VUo/7vHMtj9yUmufq8IuijMh8qf6FyBypxaN+0HpMunSDmQ2zZvg0uKjmSJTgkA5m+CBLNgRjV+DIqV+xB+W2HRVkrlWpUrXgHc7cD7QCGNL2OPk070Gf1R4i0HULVrZ+grmUrKi5fhUwKfGQdHtWHfBeZ2DA8UkR8ljyPG4VyKZY2tGHXhocRULqhwKjD2p2/wZMP3YegtzsGD+qLd97aixp/BP4Cp7gK4FQl5EsaaocMw2//5wtUVYbx9GNPYM7sxXArRZAjpfj49wdx7rgzRDba8ujwKznQvd1g0nyGfA2aZzAC2iB8cugdVPcxQWa2fcte7NyyHabixub2Nbhw3CjRFy6fhd6DR2LP/sMw/b2wbNlKcTXgL/gG+Pp/8PyDd4gyE5qIS9w6PSHYAgPRf8UrKG7bj9Cqz1G+6j3UrdyBmWt/J/psQOsmVK3eA2vVRwjeehilbR9g8OpdKJ3Ugq5KLfL0CnElh44zqkGngJ3mCupKGF6vhaqhQ7B9/35oRgUCRjk+O/whxl58JnRnISKyBNWVCV3OF4GX22fB5S2BYVXgzR0bEAr7oEaC2LT7TZTofhguFYuabsWf6CLG3/8Ph/fvRDgSEpOBJbcHBs2J8Z5caTUb9VNo1FWvE35HBpxqQMzkD7cdApVjWG1fwKJ659VfQWv7CkbbYVH7HGw5JG7T/Wg99Iegx2gyqaiN5vYf6gfqu1DzxwiRWW86fhtqPIRg04c4Xhuix5sOIEQZ9cYTt+EGKkn5ANRSWUpo+T7RBpd9IMpTfqiNbXe8ljLvMcNOpl1o6V6Elr+DaDadMurfZdVDy3Z3ZtQps06izHpMwUVRsx0UZntbp+GmMhaqQ6fa8+Ccjhr0WZsQoDr0eZuPUmju5qiBn/0GzFnr4J/9RqesWesQuGkdzJteh3/mawjMfBlF11F9+i/hv/aXKL3hWUy9azMmr3oefa+6Has3/R49p6xE/xm34YFt/4OyCU0ovupxlN30ojDpRTMeg3/Gk0dl0ymjbl35c5FRJ4NOGXUy5lS7HpwWLYmhjLow6VN+CiOmSQ+IiaX6pPugT6JJpXdH69Qn3AFjwu0wJ9wOqku3xt8Kc9wtQsa4VVAuboF8cUu0HduRXR/bKMy6ctEyKBcshXLh4qhZF4Z9vjDsSodh186eD+3sucKwK2fNhjpqNpRRN0EdORPqyBugnH6dmESqnhadSEqTSY807FT2cuRkUm3QJaI+Xet/MYQ6atL1vueBpNWfI6TXnQOt9mwhUfrSZ7QofzmyBIZq1MmgkzmnGvWoQR8YLXkpJ5PeH56yIZ1ylw6Gu2QQ3CUD4In0h6e4L7wl/eCN1EVV1AfeDvlCNfCGqjpNOmXWo1n1qEH3WSUio04TwIQ6DHqs5EXS/SD9WEadsupHS4VX+U7HM+ox03esMftn71NWnV5L70XZYCrPoFVmioqKMGP6ldGJZz5VlO1Qto0MGGX7spRKjGh6HeVNe1C1ch8GtO7G7du/EZf4H34XuKjhabx+8C84CKBp07fo1/ouKpr3o67lffS/4Wkka8OQ6yqGIQVgFToQoAmsSgB5bj9y5Ep4zDLs3PgKJp1/OihQoJpxWhbPITlgRHrhwKe/RZ/KYvh9BdAdDpEVpXpoh6yi0F+GHC+t3KFAdjswZNhA/PpXn2NgeRhGbg8Ybg+8sgFnUQVe2v4eDL0nyv0RvN/+S1Eq4Q1UYt3uz+C3wqAggspyNHc0e+qjCYgeMo/RiZq0AgkZdZqgOmPGDFRWVoryITLilGGnUiIaM+pf+nwxo/7PjtfJvu5Io05XbahEgyZVWqokSnhoBRuPV8LWHTtBEztpe6dsIkuhyaT1oka9V9u7CK38BJUrP0ZV24fo3fY+5uyEqLse0boBg1a+jbKGt1Fy8xeoXv0B6q+9HVmBKjhVmkAaneQo6RbcbkNMBM52yrhoynSyujh4cD/KQ3YovixkeYpRN3wC/vTbX0fLlL79BhddcCHCTgl6ToGoMXdpMqoGDMHh//0DeleXQfbm45nHf46FCxrg8AVRM+w0/Pqvh/ENfh8ti/oGeGvbi9B9aWKegeIKQ8mvh9/XDx9/+gl614bRvuVlTBh7PnQlCEX2Y9PG1wH8CX/79ht8i7/iW/wFH324D5XBEngKvPDoFoxQCJ/tP4C6inJ4JRecPhc0nyrm89msegxdtRblLR+gtO0L9Gp5F/1bd2DOy78VGfUrnv0NalfvReWdvwIlOqlUqPq6u5EbroGLJo5LLhiGF26qqVcVKJosSpbcSi8o/iocPLQXPfuUIddbjtpBF+BPf/gCwFfA118Df/s7dmx8CbK3B3ySCx7JD6e7DJa/Gnt2boTlt0MKa9i4ayeK1QDKrXJs3nkQUrAERVohLE83ONz5kE1d1MobNIfmZI06Ac46NX2g+dyIyIXIc5sY1rQeRSs+RKDlcwRX/xqB1i/FpFJr5W/gb/u1uDRGl8eCbb8W98OtnyPS+gmolj3E+qf7gAKc8Ip/VlETTyu6kGE/XivqxZuideOijrxhX7Se/CRamhR65OupFv3I+3Q7VgITy9yTWafMuyiHIcN+hILLOspglu1BrBSGWmHUF+1GcNEOhBbuEpnx4IKdoqX685jC87Yi1Dl5tGMS6fwtCM3fhPCCzUJ0OzhvI4Jz34B/7jqE5q0Xt+l+YM46If/s1xGcHV0BpmT2WhhXPQfrhpdQOedl1N/0GG547B1UTL0dK9v/LJZRHDLnUTS+/Cl6X32/MNzq9KdEppxMPpW+iPKXjtKXI026yKSLyaWPIjT9Z50S9etiMumDsC57ANaUh2BOfhD+yT89YvWXu8VqL/5Jd8M/8S74L70TgQl3wH/JbcKsk2G3Lrk5WqdOterj2kSWnTLtxsXNQtbYZmjnL43qvEXQSGPmC1FmXT8nKqpVj5XA6KOiWfVY+Qut/EIlMPrIaL16rARGTCwdMQ3W8MvgHz4Z1rBJMIdeCmvwBJiDLoE5cDzMgRdD738RzP4XwOh3Psy+Y2DUnysmkJJRj5n1WOnLd7XqZ3bWq8ey6WTWY9l0MuxaxUAxqZRWfvFVDIuqfDC8ZUPgLRsEX8lA+Er7dxp1Wi7QE4kadU+4Bt5gddSohypANeok6ZgadTLosUmlNMGUsunRTHrUpJNRpxVgyKzHDLusW5A0U+j72XQqizkim65E655j5S8/ZNr/ld9H2jcZc1q1hAwlGUsymLRWN5l1Wt4uNzdfTFSjgIJWD6HP7/WoyLX6YGTrG+hz87vouWofypftwLzX/oBNAFbvhTDxq9d/KerTz3vgU/RsOYDSlZ+gpmk3ugbOhDtYD6dUDKddgt/jg+Zyw+7S4NBLkKeVw6UWYc+2jZg+fgxkj1uYStWvw2sqmLt0Oe6+/6egFTKolMV06TB8tMKOGwVSIXLlgDBOwuAXFsIKBcXqJpPHnI1K1Sey6k6XBG9pH7yy6yDCoVqU+0vw9sZn0bNYgl0twZnjrgMVTf/9j/+Lx356r3gvWnXDb8hwu+wiy081ylTbHMus0xKNlC2PBT9U4kLLa1JZUazEiCbq0lhSv/8rY3cyrxVmXZZEZpZMOa1gQ6uC0GoriuwTj6/buAkOl1Ms50eTMQu0EmSY/TB6+S/RszVa+tKzZR/q295HdeMOzN4MbOvIqNe37EbvlQdF4q536x5kV5yGHLcXno65DB5ZQoHbDbePyr3C4ipVjltHgUvGkMH98fXv9qGmVwi1wy/Exre/RM+yUvglmgNgx+7t2zBl9EXwF3rFMpNOzY0n17yKP/0d+MtfqC7qL8Bf/yrG6KYFTeg7YiR2HdiNcIUlVnEpUk1s2/AMFs29XAQoPiq/KahFxBqKzw9/gW/xe/z0vpvFMouF+RIsM4KdO7bgkkvGoNCZD5/sxtChdXh711aUWyHoLhVWKIL9Hx3CwJo6SPZCSLoPLtkjVqBxakWwWbU4o+0l1DS/hdqbv0DtygMYsPIdjFixGesArAEw6I6PUb76E5S1vIPBjWtRUHcxuhd6oXjzobmz4XNlodDtgl1WYKdViZQAzht3Nf7wNTCgthiKNxcOuRz1wy/C3vd2oDQiwef0Qvep2LtzPZqWXCdWo3G5VLjdlTCt3ti66VWUlvtglVtYv30reobK4c3z4cJLrhZBE83f+Nl9KxAIK2LlHAo8aMUd2UflQT/uP3ky6SmcTEoHtkcykeCqwtC23aJW2k+Z3ZYvUNz2hViqMbDiMIIrDqOo+RMhuk8qWnEIxc0dGfWOFUfEUo18HhGAQgAAIABJREFUW1xtONm+ON4Ez5N/7CACKz5CYMVB0DKMx2vJXB+7fKPZGDXrx2uPXL2FVnMhc3+87ejxmPEPNOzrzNBTlp0y9tFa+L0dyzBGl2UUyzEufQv+pW8hQO2yN2Et2QNr6W5Yi9+EtXgXzEW7YS7aKVpj4Q4xYZQmjZLMeVthzt12VBsthYmWw1BJDMmatwH+OethzHkD1uyozNlrQTJmvQb9pldhzHwV2o2vQbr2FYTmb4Excy3kGc+i6PpncO2a/0Wf+c+L5RlpUqc+6S6x6os8+adiOUZa3tG68VUoV/8S5tVRs25eRZn1Jzuz6bHlGKk+nRTLqtNqMOYV0Rp1WvHFP/k++KfcA2vy3WJ1F3MiLckYy6LfBmviT+CfcEtU42+GNW4lzIvJlEcnkhoXNsG8ICrrgkaxFGNsSUb/ectgjVka1bmLYJ27CP5z5nfKOntu52RSWvlFP+u7VV++W/Glozad6tNHTIM2/AohWvHlyGy6PngCYtl0ZcDFUPuNhdLvAtBKL2TWabWXaEZ9jMioq3XngkQTSklU+kKSakZDqvluqUZvz9MQ1XCxJCPVrJMx91YMhq+czHhfSCUdKq6DVFwPX6QWclEt5EjNUSvA0OovsdIXWgFGKFgKJVgKOVASlVUM2SoSInMeW6aRlmqUjejSjGTGY4pNJP1u8mh0BZjYyi8nWvGFniNDd7wfypPOqv7I7wfth7K8ZB7pfY4ykF6fWM6QVr2gNcVpWTyXpEYz2y4DqUo1Bje9gpIVu1G2+iNUrPoINW3vobr1HRQ1vYfSlvfFqiHVzTvR6+ZDKFr5KUpvP4zatnakFfVFptuDfMkQNf2U0SXj6tNMFMoW7FIEslmBrRu2YOzZI2FKWfB4ssW8AZon8MGBvRjQrxJ+wwdfoQ9BuTdMbwk+OvQmagZE0LPfELy0fg88TlmsgT1+/Hh8eOAgeoVLIGXnRTPwkgqHWYp1ez6G5u8DSwpi35ZfomfQBZdegmypDC6nhGLLwLb169CzNAK/JsNlzxO1u9QvlE2PGvXoONHEyVhZC30fuk39S31L9ykwit2PZdZpm/+UPD5358ok1MdU9kIr6yhuN7xuT3SZRFkT9f9k6ul/p1B9fnejBqMWPSGyvzTXjNb+HtiwBUOWrsGdb0Os6DO88VXUtb6Nqls/h9HyGepveQ82Tyk8qgrdCos12ymzS2u1U8Z7zCXTccdDj8NB8zXUEIYPG4SvD7+J2goNPYecj0/+DFx44YWwfAViXL/69FNMPe9S1ITLceDgboTKdRRIClxKCBYde14fnnvqUcybO1OUQ2nhUjy/9jWcfcF5kLyymPfwzq61mDz+TPF9XXkaZE8tNKUXPv/iXfTqreGZp17CvXf9HIZsQvIUYNPWF3D+2DOi66J7dPQfMhzvvP8BysMVCBtFOPTJx6jsWYoAlbu4C+Bx5oq13zW3Ey7JQIJajnNXPIUBjZtQtfwtVDbtQ6+Wfei78j30bnwT9bceQlXbAVDgM6B1D0YvfxFdvDXI8wbEWum0/CdN3KaVebyqH929Rdj23mFs3rhJXDkyHFlQ7Nni+9GqfGu3tuP8Sycj36EhGIhg67rncPE5AxGxFKheHS4H/c+ASmzbtg7FZRJcagG27mxHeaQCqseE3WFBkiz4DTve3PUSQkUqPB6XWFFHcvmiV7JOgk+eTHoS0czxTuT/jsfochll09O1Ogxd+Ev0bdqOevqHRg1b0W/pRtQvXo8BDds71C7a+qZd6Nu4EwMbNmFww0b0b9wi/mFC36Z2bpvb8Y/0A21b17DlX1LN0vWoWbYOP9RWL3kD1Utfx/Ha3kvWovfidaC2atHrqFr82vfa2PPHa8U/T1q0Dn0WrUWfzpZur0XNQvonSK+Jf3h0vH96VLPgJVQvfAm9F6xB1cI1qJr/Yqd6zfslYuo5+3lE9Qv0nP2dqmb/AlE9g+o5MT2F3rOfRs2sJ1F901Oovunn6D3zCaGqGx9H1cxH0euGx9Drxp+h6obHUHHD4whf/Tgqb3wWZTMeRt2sn6PX9Y+IVV96TbsdPaeuRr9r7kLdtfegfPpdqOz450YVVz2AyIyfIXjFT1E+/T7xD43Kr7gTpIqpd4hsfPnlP4HQZbeg/LJbUHnZrR26GRVTVqNy8ipUTFqJikmtKL90RVQTG1E+sRFlExqESi9ZiooJy6IavxTl4xYJlV28EKRyas9fgPLzF6DyvHlHqed5c0EqHT2zQzeg9KzrO3QtSkZdh5JR13T8U6NpiJxJ/8xoKorPmIrIGVNQfPoURE6bjKIRE4WKR0xEZPgERIaPR9GwcYgMHSfaoiEXIzx4rFBo8IUIDrwQoYEXIDjgfAQHjIFZP1rIqj0LJH/tmbD6jBQya86AURNdklGvHgmhmtPF0oy02otY8UWUvETLXiiTrtNqLxUDoyrvC72sFkZZDcyS6k4ZxVUwO6SHykHSgiVCRrAEpNja6bRm+pEiQ/6dAmL9dMXsWDvd8EMx/J0mncz6sUadVn2JmXYqITkZo35kJv2HjPs/e76PlWJQtpeywLH9kIGn27Qus6HpYlk6WjGCMv6UWaf1zLOUXjin+Vn0X/EaapdvxICWHRjS0i6W8Ktf+RYG3LIXg1ZuQ/+mjei/oh0D2naidM**NX2PNIVAz7DC4eqwaEZwtzZXU7ofkv8t8U+A07HH6k+glZ2+fYveOKR/6+9M4uNLDvv+yVZLLJIds/aO9fai0XWRrLZ3ZIlG3acxYntBwNBHhwHAZIX5ykvThDt62iWnl5mRjN6yUOQBIJiBAECOAmEOLAfrARwHhIEcRwpirZkRpE0kkcjjdYv+J3Lr1lNkyJZRdY93fMncHBu3e189/t+55z/ObzLXVtaftweuVC0T/+rf2+f/vQ/tqX5M+E1cvOXirZyoWfd+nV77Rv/0zrXSlbrbNmXX/3uzvHcGfBWeG1idalqqytVa64sG/fhcjvT//kzs7d+lJb15tf+xDbr8/bOv/Cr9tqbZj/htTE//ZF95p/9k3C7C2984UNJvA2Dt70wk46wQWjjM/4z4THywRQPk+Jn9sGnrGed3xLjPj+NnI8Mkbj/PMST9+Xzdp2l1BY+ssOr/9jOO7P5aiUCcXa+ZX/nE58J/zH5pWf+0H7lI//WfuuZf2Of/uPXwzvU/92Xfmq/8bHP2C9//PfDR5B+/tZ/s1997j/YE7WeXeY96NwexYzscjpQubzStGrruv3vr/+/MIOLu7//5vfst//mr1irdsGeWO7Yr/2tv28//ilbvhtmyz/+wQ9b9VLJGotl+8pX/rvd+PleuK3p8mLNVpbrhpD81//yM/be9/xO4PLc5UVbbW/Yq994Pbw7hrj9o9/57fD6RwYn1dKaXbm4Ee43/7+v/oldv1G3hYWG/YtPf9a+8D/+1H7uRtc+958+a7/1t/96+p72pbr9wl/6dfuvf/plq5bb9tRHnw2Q/OhHb5j9+A37L//xD4zboHilI/8NWlwo2mP1jv3mh1+2v/Hs79lv3P6c/ZWbf2y/+Ik/sr9683P2125+zt71od8P2ogZ9l//6O/Z333qd+1c7d3hAdL5S8t25eKSlZcqVi9W7cL5RfvNv/d++1Zg8Idmb3Fb0PfMfvKWffR9/yDEi9tW/tc33gw+/clPzD72oX9ozdJFK145ZysI7csda1S37c/e+Kb9xF637//wO/b1b7wWPl72l3/514x/TATG7Q375//0JSuXFkN9X7iyaIvc5nZE/ZnkcjlTys4HhdkZS3KzljxatmSmbMn0giUzVyyZuWTJ7BVL8pcsmbpiyfSSJdPLlhSKlhSWLJm6kKbpK+lvtrNe+dH9EHy647OBlonVkiWzA+Yz88Md31/u7LIls4tpmsGePamwYImn6XlLSIV5S2Z30txlSzzNwp6ny5bMki7enwoXLAnpsiWFnTRzMV2evmDJ9CVLyAus8+S/2b6z7yMVS85Wdng+Z8nUJUseKVqSf8KSwuOW5M9aMvNkWifmiBXcn0/9dpY6w3VSX6gHly2ZJl3cTYVLloTkNuzkwbYLlmCzp8J5S+5LlHtuN2FPf5p+MrWbOpq/cH+avGAJqd+We/uc29mX633MkqlHD0hnLJk6u5vyZyzxNDmbLodjOcdjluQfsST/6E7+iCWTZy2ZfsyS6UcsmTogsS1s3ykHf4c0Z0l+N43l52w3zVgyWQhpPF+wscnpe2kiN20TuXxI4xOTlp8q2GR+2vL5/J9Lk5OTYdvE1Ix54ny7acom82ybttxkwXKTU/clyuHcpL3b+M32e+vzk5bbJwUbsGNP8j5x7/q9v32/g/KZmRkbHx+3JElsamoq+IBz+P74CP8l+LAwa7n8mI2PJXYmV7DJSeL/uCXnqpY8Wkvb/9y8JfkFS85U0r6COjtzwZIzO/zP0aY8ZoXZxHJJYpw/GZu0JDdlU7MzVpjJ2fhkEn7npuYsNz5h05OJjU0kli8kNj37uI2NFSyfT2xyMrH81KxN5uaskBRsdnzKJqbHLSmMWTJBjKctNz5p+dykJcm4PfrYEzY1Nmn5JLHp8XEbG5uwuScW7LN/8J/t3JPzNj0xlW7LjVlh7gmbmHrUZgtzNpEkNjc9ZTP5STtTmLb85EQ4J36Dm4nJXIjP2NiY4U98SZqeng5+nJiYMN/G/mzjN8vu59PKJybGbGJyPLCVz+dsZnI8pOncRLA5VzgTfDWeG7PJXGJnZ/M2QUxmaR9omxYsyc9b8ng9bbtyZy2ZoG6dTdvjR5qWFFYtyZcsObNoufyEPTYzHvyF76emCjY2nrOZ2UdDDHKFCZuam7ZC4TGbHC/Y5HgSYplMztr41Bk7c3baxsYSy+XGbWpy2qaSKZvLT9vZRygzsWR8wiYLc+FcM9OFwFBhatomcwUbJ34zBZuYwsfjxvrZ6Qkr5JPALHwXps5ZkswG1sZy6fpHH5m16fyUjScTNjGWC8wlY4mNTeYsyc3Z2NQTls8/alP5lP9HHqesxMZzieVnzliSTFphvGCz+RlLxnOWPHbOkkna0EVLpkqWnGulbe3ZnT6Pvnyukm6nH0rmbK7wuD0y/ahNJdM2k0zb2YmCPTo1Z8lY3qbPPGFJkrO5mVmbhs38mOXGkpTr3IxNzj1uk6ybgLvx4PO5Qi6wfKZw0WYLF+yPPveH9uT5WZubTfmbmztr42N5G0tywU/heiYSm9zxO3UGfx2Vy4RPGStl44Nup2UbnaZtbnWsvNayRnfT1rs9C+vXqrbZLNu19qptddbDZ5JbvQ1r9bas092wzc66bXXWbLPTtl6nqzSED/gENT4cJO+02tZur1unvZ5ZTtnYATfddifYwm/W91pt67X2z1Ob29bqrB+QmtbutqzdXbNOd+2+3Nd1Oq3QfoRyO520fMreScEmOG+3gn2B1277HrerzbatrbUC41e7Lev2Nq27ddXqtZJd22jbtQ1827S1Dp/L5jxrtt1rWavVsVqzZeutXkit9oa12l1r9yU+481vcuzrT2nc2tbsdq3R69pad9PWer09qbPzu2PrXZbvz6mrne7VvkTd5PeWdTtXrdPetHZrY9/UYf2Ora0ODBGHNG93vT1qhfWBr9BOp77G58Gv3XZoC2gPKLM/73bS3/iJ5GX15/glTZTHcppji/un32f3lr38ndin9vrxnGPXTs6F/e3WWkiBVa8vrLt33d2d69+Td3phPbHdL7WJMfvsbD/oNzbul0677+NT5Jubm+EBSPJwva2WbW9vh4dJQ8w2t6y9fcPa17ZtvdOwXrtu7yQeq2tW32hbubMWPrm+1dm0rc3r92INk41W3XpbLWs36+HWkV6raZ31ql3vlu16r25bG1dtbb1nN66/K3wavlov2Y13bqdcrbfCR5fof1bbdWttEKdNW2t0Al+9XsdWmx27fu1ddqPbs2sbHVtttW29t2VrrXW7fv164KTX64Wvh/Jw7NXulm20eraxsWHXrr/D1te3bXv73ba1sWnd9TXb3r4ePkUPb9xvvt5csxtXt0L7wKfiAx+dVvikPefobvSs00vbZvyHP4kZZdJek65duxbWcc8/6/Et5+b4041vK20XO83AeLfbDu3YRqsZ2lzq83rvqtXW2ra1tWHXtlp2td0Ifig3N6y59W5rXb1um9feEe7fbtbbwRfEsN1atc7mlpXXtq134y9aq3vVWutN21wv2VarbOuNum30tm2t2bGrWzfC9W5u9lIeNrtWq6zaVu96qIu0773NjRAz+Nrcagce11bXbYs2rEUbvJbWP9qeXteIfXu9Zb31rm33rlqn1Q3tSHejY62NtvWuboc6R5uAFoGhUqUYbNncuhH+87WxfdU2N1et1SqH5zFok7Y332GttW64vaW92bLu1XdaqQZv16zb7llrvWHtzqptXt+wZrcdtlcb2Ijm6Vpvo2Vr3XVr9Latde0XrL71c1Ztbwb/9tqrtrnBPlvh1rnNd/yi0S9c375h3bWOdZpd67a2bKtz1Tbqa+GVi8H+zauhvebWFvy+2iiHesF51jtbVquvWrtds+3ttm1sXrP11oatra3aRrdna41N67ZvBA7bnabB8CY6rZW23dtXe7bWrNnW1a5tbHRtvYlfaStTdnbbSm/z988T/iWnlI0P+ARteeVyeAqZp4/5Fy9PPc+Xa+FeNp4arxaXjPuqeJUQDxkt8U7aMh/2qBjvZS2VKkpD+gBf4sdj5+VS+nGNamXgnLrH+4v3y4nvfuv37p/W32qwgS8C+m/ySqkaPgF9UM7X4tL996sDfAqZ9cXwueT+nGUvh/tr+/2XnpPzpuvZxueZeYiuP6+UylarVK1eq4SPQfD1PjpbvqJYqZTCv8B5bRz//uY+zJVSMXxunS8Ycp70wyZpOf1l9l8PZYZyD23n9vNDMRzLa+G4ReHP56VQB4lTmlbu5Wm5fI0PP92fuLY0VULsVyrVcI/y3pw4ez3fm/s1+vWl7YC3B/gZpks7sYeDn5GIL9v78lopjXn4pHtxxfi9m5bD6/PwCXYtl6k7O23STrvk9nJPLrHjWgK31Ur4ncbOmUvLD3yVdnjzvELd8lj7/v35Hs4Cz2ksjxb3/nOd/DIPOvLvbW7LIGZ+/zS3cIT4lHl/+1K4NeVSccWWilfCw5RrpXp40wWv31uuLdlaZcma3Mu+Ug6fLA++56MwjVq4FYSvHfJ58uLyijXXajY//6TVa8XwysfFK8XwcZZmYzV8t4N3eTcrDasv8SEh7tVdsFJ9xSq1si3Or9j66oYtzKfHhnajXLQF3hNdXLBKqW71ylooE7u5tai+2gjvPqdeLi/BbD28Q/3y/BUrLZattlKy4sqCVWvF8CaY5ZVq4If3ptfLpfDRI+7npu6TuLUlcF0phzq/jF9Wlq3WqAc/NhqNcAsMPmU/HiTFn6urq+EedT+eW2C8npxOTh1ZtlI5fXUk9Yc3vvDO+spK+vq/K8tlq693wltCSosXrbZ4zsIXQ8uN8G2AC0v4nzZ7zWq1dnhmjfa0u162lfnzNr9QtHJlNZyzsXzJGivcX74QHiblC6LlYi08IxDuf1+t22VupSiuhPd011b43H3ZVuu873veio2ilVfr9vj5c+EhZuo2t86srtZtiTfWUHeLRavVKuG5ANrmWrEazsFXSqvFUthOPeY+eW7d5aubvJKS+lxfrdlKddkuLlywarMW7t3nGQMY5VzcF16tlMJzB6wPD+Iu0eY3bK26arXFFWvS1i9dMb5YuhjqQy08KA4X5cqyVaqLVqrwwPW6zS83rVJdDe0yOok3BcEJ7+8vN9bs0gK3y1wM9aBcLVmxXreFWsMWqnxNlFt1FgO/tF1cGw8A95qV8DEibqmbX6lZpbEW2vS1ZsOWrly01RqvUV0w2mpeCUvcyiW+Qsv1la1arYdXq+LXWhVuz1u5eiUwHuroypoVV9Jr4Uumad9weLuThAqx05lpOe3UR+UHGttmvWSLi+cDhNyfyMvxF8qrYUTKBznYZ7dDRKinKX2zwa64TDtqifbj+iEIih2RPtDyPZHmYu3+HHHpaVfQ3b/PUOv7bA+CGXHcJ5AP9QcPOu0kxN1uSkU1gni/5HVk12cu1NKchg47yqExu19M7dpUCq8Fo5EtLy+ETo8GnI6gWqUT2OkAK6VUpPN1wpWlICjpZFz0+/mKe97iQafjdh6U+7XRULNcWSmGDoWOls9iu2Alpx6GcvtyxHsYZDPQLi/tLCMQ6GCXw322fGac+23J2d879vTY0o7QdcGb5nw5k/YA/6ZCOK3ru/6mU00beBfhfi3HyblGT/tdn/vh/utOJw9226VUqLude3Ouo/967l1DMf3gEOc5KAV/7QyS0uX72+j+waBzkK67f7+D4n/a6/1+akSkD05cpKd8pfep0/EvMTitwdlSuD+4Xm1YqV625dJlayLglxYCm+E6l+atUSmG+oBYWm10bf5KKYgeHr5EVMMl9Y/Z1Tq+Xl6xK2U+Mb8e7tFFqOPTxdJSED8wihBfmi9ZrdqyUrFujUo1vH1lubJolVXaCoRbNdxnywwqn3dnIMZXFhevnLd6Yz0IGN5PXa3XgkhHMHJv7gqfnEfQlBvhi5rVlSv3hDri24U3MVlda4ZXGtI2+iA9LJdpF9I3uiC+2RcRh28ZBLHMOgZHvnx6Mea6lsIgJPiuzGB22ZhwILZwuBje4V8Og01EXrM8H94VXyk3gtjmAWk+1oUY56FDPuTFB4yWLj9prdqS1as1437mZmnZWpVFq69cCB8n4iFrHhhtlFfTr2BWilZq1IJ4pn6FSY8iX8NMBSTidr40b0sMfBurgZsw4VEu2jIDizDBk072hDaYOomvl4q2yqtQ5xcCC7QtxCG0TVUGGLCAz5lIWbaVKoPOS1ap7fR7oU1OJwkQ6Xw3hnaQASznr9erwZbSwpI1iyVbLxVttZh+sZOBmT+DsrSyaOXKUniwNLSbRQR6M7zekHrA9a420r6H168u0V5XS1av85zDJSvWSkGgn4OdWtUq9ZRJ+qjUX8vhS6jVpUupUK82baFYD9dJ/724uGyNetUqK7yVaClMmrK9Um3a0mLJ6tWm8VXhIoPQWiM8o4CgL9fmrVxLB9il5YaVi+vhmIXFS1atpZM/R+EzuX37till54Obzz1jL7/8UnhwgQYJaKq1RvhYBDD3B/FeB+fiLMyox9Eh9ds5ymV81N9A02DT4L/88sv23HPPZc72s88+a6+88sp9trz44ov2zDPPGPkofTVoWQjeO3fuBF+S37p1Kyy/8MILff69u7N8UH5wHbtz+3kj3Q7p4P3626k7t3b3wx5PdNAwgM0+s3aU66YDYr/j5vefe2cmMAhLznfY77RMOj7Oc1h+f1npMSe97mjX3z9Icrv9P3z+++D8pG2O+XwwCIswCZvOqdehlPvbdutOmtI68Lw536xn3Qu3nrMXblFHUu5364zXA+qd1730mHTfdL2f7+adF43Eb1/nZfTvn57r7s4+z9utO2li/Z1bu+Wkx94O9Te9lrt26/bdcD2cb7ectH6zLZxjp867DX5dx81p42nrafPxMSwg0OkT9vafp8PJ/WLLB5xeFn02Qo92E//cvXPTbt+6GXxw94WXUl/t+AS/uO/S+O72X/yGgTu3Wff8znHE0WO0w9AOA+nxuxyFY0IMnbM0Zvi7n8n92k/aBE/3rmtngsp/e+6TFrtt39526n5/+XF+fp8Q8PX1+qrNz6f/aeWc/Hct7d8/Zc89l9YHv1ZnZ7cueT2A3fS6b965azd36lRa13bqE/XBmbzn312O/dz4n/1CnPri5vUlzb1uPW+376TxSo+/a7dvvbhTT4/X32lGPeP/JjC78tRTT4XGhWWvKIB6lBlBB/rtmruPvCPEhzTU+JTlrP3i/3LFTuwhp6HhHsqbN29mbt9h/sGXXAMDC2a94JPEMv9aPuz4096OLfiUGUts9PjzqrbRdNR7OyL9Pu2YP0jnh0FYpB7BJoz6LRqw+yBdS4y24tOY+0+1n8O1h7H376OqExLqGQt1GuuXXnopiB+EDw0PopM8BiE0KhAHLWc/n/X7dNDzntRxxBF7mFnDVjpu4otYv3v3bvQdtdv9qU99Ktjss9RcFwL+pPw06Hm8rvDqO+qRD4zwtTfyg55bxw3Xycp/6WQLLDqXMAqr3s7LR8Mx1t/W79cXZO1ftZ/DxXe/mPbHPOv4jqp8PUx66ENmh9/o743woPknP/nJIIIQHcy2+Icb+D0qEB7UcvARggyf+X2giGB8Omg8TvI4GmpsZAYaG/EzsyzYyL8cY/c7AwuugUEFfuFaEBmIDZ8tOkl/HfdcLoKwEX/6oAgWWI7dv7JvuI48dv/BICzCJ8swyjKcO7vHZV77398nx9x/qv0crn7H3r+Pqi5qRj3jGXUE2/PPPx8EkEPZ34DH3hFlbZ9XFHyGYMeHJHyKb7O2j04ZGxC35NhIh42NzK5lbd9h5WMrPuZf9ixzPQh0/O3XdNg5TnM7NmAXAyEfTLhtrD/NsnXu4Trht4P/YBBGvU2HUb+FLIb686DHIPb+k/ir/Ry8nYi9fx9V/ZFQz1io815Yv1cZEYcQogFHyEloHF7B8RG+wmf4Dh9SefApvh1VRTqoHOzqF+f+G7HLvZUHHRfLenzKrBAPjuJnnyHimmhEs7YTf/p/oHxwxjpv4LO2T+UfXocfZh85hzDpopK6A7Ose5ivfRTXFnv/qfZzuPofe/8+CsYpI6HRUMrOBzTYTz/9dGiwEUEu0CXSj17B8ZVXaHwI2PjUBVyWfNNQE1MSs2ok1vHv8AfhrS8uJviXPbbjW96ogE+ZGczSt5RN3MnxL4MJlvEtdsbwHxXsUHr7+sAZhEnY9AFvP7ssKw3mg9j7T7Wfw9f9mPv3UdVb3aOe8T3qBJrX99GZuxBycRfDjGXsIgMfIdLwWb8P8Sm+9RmtrHKvyNinLygwAAAU9ElEQVSIfS5uEbu8sit2/+JXrsFtZZmv2JHDa1Z+9XLdr/iRV2CR41u2+6Atdh/LvuE781h9CIOwCJPY6IyyDLvOsfL77zs/qj9oh2LuP9V+Dle34SDm/v2onA67n259iWDGi9lKAkmjQwPOcn/O8oOcuM2DyubCzkU118lomdz/NUzuFZNth133Xl/hQ9bh08OOZTu2uQ385ngStmKHPzTJMrM37EPn69dylDKwx+3qz/s77aOcZ799+v3qNlEe1+V+3u+4465zW/uv5SjnwAZs4TiS2+j+Pco5DtuH87KPDyb892HHsR3eiCt5v338dsHvHLo/nU/2OUoZw+5zmvVnWNsOOx4f4T/nHh97fFh32PGnvd1tcLvIWYfNJxlfv+ZBGD1tHzzo538Q+s9B209ic9r1fxg2se00+0+3zXNvR47avx/G9qj6z8PsOGy7hHoEIvighuaw4D0I2xE3JCqazy7RAfIvYSod6xBEVHZ/yArhxHp+H/UaB63ILr44nsRv7OM9576MHX4NbGOZdBzbvIHpz73xPup59tuPhoaE7W6b/z6Ojfudu3+d20o5fg392w9adr9hE8vYyDnc7oOOO856zsf+g4og7CK537g+blXgN+flPlgvg46J7ex/HBsH3ddto/zTrD+D2nfYcdjtohffsb//dv8edo7T3I4NMIlNlION/ttjfhLl+7kGZfQkbHhYz/Eg9J/DtJ+0AadZ/4dh09tBzkHiN/XnJPtPuHUbve85SaHu7T52Y7//9muLod5IqEuon6rgoGIhMBDmJCqDVwSvgMyussx+bGM/P+aolWTQiuydMoMDBBnlX758OdiDHXTc58+fDzmdObZ6Z86xR7EP27yB6c+98T7KOQ7ah8YEm0heTv/yQccdd73b6mW4vw87j18vNvUv8/ukGkK3ZRARRLyJJ4MxGCDmiPSLFy8GFvw/KqzHfrg8KbsP8x3bvUzKJ51W/TmKLYPuQ73xukPcuXUKX4/SjwfZjg3Ygk3YRnJ7DzpmkPXDMDpIeW+nYx5moT6K+j8Mm6PoP2HZbfQ+5KSEOvXf6z1lcH5++3Is9UhCXUL9SGJzUGARQoDvopZO0G8pQBh/6EMfCp2kn59OEzHkHbuvPywftCIjfhBpiDXK5Dc59rKu0+kEG5khwF5sw0av0IfZxXav9HtzF79HOcdB+2DrtWvXgo3Yir9Z5wL0oOOOu95t7b+Go5wDP3IMDSI2dbtd+/CHPxxsxs6jnOOwfTg/+wwi1Ik3x5ITb0R6q9UKNpL7Q4Aec66B/clh4DDbht1OOaOoP8PaedDx2I9fe72effzjHw/xp/5Tj0bhv4Ps8vXYgC3YBJvYiK3Y7LH2fYfJh2F0mHLfDsc+zEJ9FPV/GDZH0X/CsNtIfWX5pIT6qPrPYeuhhLqE+qmKDQQaYo0Gh0pGcjH0la98xb73ve/ZF7/4xSDWXcxzDJ3nceA+iYpMo4NtlH3p0qUg0j//+c/bD37wA/vSl7507xq8A3d7D7MT27yB6c9d/B52/M/avrm5aV/4whfsW9/6luFPBhRcAzPClPWzjj3ONre1/1qOcjw2YIvH/Ktf/WqwFZs3NjZOxD6P/SBC3QWjn4OYEuu33nrLiL3P/pIj3vhvCzn7ucg/ih8G3WdU9WdQ+w47Dh8x4MGn3/72twOrPujl2g47/rS3YwMDcGyCSWzEVmw+yfg6X4Mweto+eNDP/zAL9VHU/5Ni87T6T/h0G73/PCmhPqr+c9g6JqEuoX6qnSWz1f7JbGBldpAK/cEPftDeeOONIIJ//OMf20c+8pEwE0zDxD5USBfER4F80IqM6MIeci8He+m83/e+9wXB9sMf/tC++93v2gc+8IFgE6ITO486I4xt3sD05y5+vdxBcvz4ne98x/hj0PPe97733r/yKWuQc+53jNvafy377bd3HX5ysYs/v//97wdbEUT4c+/+g/z22A8igvARcUSwI775Dw9cItQZoOFftjHYgBES5cEIHAxi73GOGVX9OY5Nx92Xuk28+XvzzTftPe95T6hHR60/xy3vOPtjA+0MNmEbf9iKzcc5z2H7DsPoYed+u29/mIX6KOr/MGyOov+Eb7fR+8+TEuqj6j+HraMS6hLqJ9oh7QUSoYbQoUOk0SGncvNvZmauEMDMqLOOfdkHoY4IOk5HPmhFRpxRLp01gp0ce1nGxq997Wv2+uuv25e//OUww45NJG8w9l7vfr+xzffvz1387nfMUddh62uvvRbEBbPV+BEfeplHPc9h+7mtfl7392HH4Vv2wSZsxZ8MLF599dVg62HHH2W72zKIUCfexATmiCsxJ9b8hwJbmVllvYtyboHBx0ex6yT2GVX9OQlb9zsHsfHZ6m9+85v29a9/3drtdhhMMhje75hRrsMGYopN2IaNzKxjs3N1Evb4uQZh9CTKf5jP8TAL9VHU/2HYHEX/Cbtuo/efJyXUR9V/Dlv/JNQl1E+1s0TkINJcBAMsooiKx0wr9yvTKbqgo+K7cDoO3MNUZMqmXM6BvYg3EuVjO/et0qGzjf2w/zhijfN6A9Ofu/g9znXu3Rc7uTf9/e9/fxCTNDzYRznYunf/QX+7rf3XcpRzsT/+dQ7wIzPp2My2o5zjsH38PIOIIPxEjLGR8+A7uPzEJz4RYsw6T+yDv/Er13OYXSex3f122vXnJGzd7xz4l/XE+2Mf+1gYrPHbB+b7HTPKdcTU6zJ1BxuxFRvc9pOwZxhGT6L8h/kcD7NQH0X9H5ZN6tBp9p+w6zZSJ1k+KaE+qv5z2PonoZ6xUKcivvTSS/eEIdCTgJF82AA/7Mf3+8r9ReXDp6MSUz/LxzQsbiP7uSjk1gkXvz/r+Ky3YT+NMCLY/ck1eIOZtX3Y4gMTb7z7b7XK2j6V/2B/A+Ik4kf9gUnOBaPUHZiF3ZM4/9v5HLH3n2o/h6v/3neSx9i/j6ruSahnLNSZxXnuuedCw03Q+U3DjtgcFQQPejk+y4nvuBY6QXzqv7O8Pm+oiSmdCol1zCwzmMjStqOWjc0MKsiZfeRWAW9Aj3qO09qPmWZswS5sxM8IIJjwhv20ytZ5h+uE3w7+g0FYhEnYhFH/bwLsvh18cJrX+CD0n2o/h2snYu7fT5Pt/nNLqGcs1AmGCwyfRUdoushgndLBPsB/+Mp9hq+8Q+wHPatlGhmEOY21Nzj8prN+6qmnoo8tNuPTF198MVyHDzhY54xm5VvKxR634+mnnw7CB5vhge2qOwfXHfnm9H0Dg7AIkyw7ozALu6xTGs4HMfefaj+Hq2PUjZj791HVXQn1jBtKGnFmVvcKC5+JHRUID2o5dHb4ykUH17HXp1leG41MfyxZdtH+IMyoYy/+fP7554Og4HqYxXKfZ+lbysaX5Dzsye05dIw+U+niKGsbVf5wQuxB9p8z6M8YwKg/mOzsPsjXl7Xte9t67wf629wsbVT7OVzdj71/HxVbEuoZC3Uq8iuvvBLEBbOsNOw04DTs/LuU7UoH+wAf4SsXv/iQ3/gUv42qIh1UjtuFnXxUhf1ofLAR8Rt7bLGVa+iftYJRrsVFyEHXPor1+I+Y02Fz/y+20lkzmPCPFMXuY9l3cP1+0H0Dg7AIk7AJo7AKs1zbKOrIw1wGPoy5/1T7OVzdjr1/H1XdklDPWKgjdp599tnQYLvgBE4qOA26zxAo3/9faPgIX+EzOkJ8SOXBpzEISW+omYnGPuzELux+4YUXoo8vdmKzP0fB9ZBceIyqoTqoHPzqg7O7d++GZdZhN+tVb/avN/LLaPzig0jnFEZpo1jPuoO41vqjzcTG3n+q/RyunuG/mPv3UdVTCfWMhTqBZraSf4kyM8Aysy406OT8VjrYB3t9hQ/xJT4bVSU6rBxEEZ0yDQ45s2y8khLxG3tsuTf9mWeeCbdnIS54ewX200FyXYdd+2lvx6fM7mMLcece4Jdffjn8t+LmzZvR+zf2+Mu+g9ueo/gGBvnPGUzCJozCKszC7mnXj7fD+YlDrP2n2s/h6s+D0L+Poo5JqGcs1Gm0+deoz6YjgJh5JfgsjwKCB7kM9xE+c9/hS/93c9bXhqjlDS8+0489CF7Wk2dt31HK59/L+JZBBn5FYGB/LP+6xy58iT3UJ3KJoKPNSB4l/tpnOF/CYj+bsAqz8utwfsV/D0L/SezVfg4W69j791HVYQn1jIX6qAKtcgZrKOQ3+U0MiAExIAbEgBjIioGk1+uZknwgBsSAGBADYkAMiAExIAbiYiDJ5XKmJB+IATEgBsSAGBADYkAMiIG4GEh4o4OSfCAGxIAYEANiQAyIATEgBuJiIOFBFyX5QAyIATEgBsSAGBADYkAMxMWAZtT1HwX9R0UMiAExIAbEgBgQA2IgQgYSXremJB+IATEgBsSAGBADYkAMiIG4GJBQ10BFAzUxIAbEgBgQA2JADIiBCBmQUI8wKBrNxjWaVTwUDzEgBsSAGBADYiALBiTUJdQ1ghYDYkAMiAExIAbEgBiIkAEJ9QiDksWITWVqpkAMiAExIAbEgBgQA3ExIKEuoa4RtBgQA2JADIgBMSAGxECEDEioRxgUjWbjGs0qHoqHGBADYkAMiAExkAUDEuoS6hpBiwExIAbEgBgQA2JADETIgIR6hEHJYsSmMjVTIAbEgBgQA2JADIiBuBiQUJdQ1whaDIgBMSAGxIAYEANiIEIGJNQjDIpGs3GNZhUPxUMMiAExIAbEgBjIggEJdQl1jaDFgBgQA2JADIgBMSAGImRAQj3CoGQxYlOZmikQA2JADIgBMSAGxEBcDEioS6hrBC0GxIAYEANiQAyIATEQIQMS6hEGRaPZuEaziofiIQbEgBgQA2JADGTBgIS6hLpG0GJADIgBMSAGxIAYEAMRMiChHmFQshixqUzNFIgBMSAGxIAYEANiIC4GJNQl1DWCFgNiQAyIATEgBsSAGIiQAQn1CIOi0Wxco1nFQ/EQA2JADIgBMSAGsmBAQl1CXSNoMSAGxIAYEANiQAyIgQgZkFCPMChZjNhUpmYKxIAYEANiQAyIATEQFwMS6hLqGkGLATEgBsSAGBADYkAMRMiAhHqEQdFoNq7RrOKheIgBMSAGxIAYEANZMCChLqGuEbQYEANiQAyIATEgBsRAhAxIqEcYlCxGbCpTMwViQAyIATEgBsSAGIiLAQl1CXWNoMWAGBADYkAMiAExIAYiZEBCPcKgaDQb12hW8VA8xIAYEANiQAyIgSwYkFCXUNcIWgyIATEgBsSAGBADYiBCBiTUIwxKFiM2lamZAjEgBsSAGBADYkAMxMWAhLqEukbQYkAMiAExIAbEgBgQAxEyIKEeYVA0mo1rNKt4KB5iQAyIATEgBsRAFgxIqEuoawQtBsSAGBADYkAMiAExECEDEuoRBiWLEZvK1EyBGBADYkAMiAExIAbiYkBCXUJdI2gxIAbEgBgQA2JADIiBCBmQUI8wKBrNxjWaVTwUDzEgBsSAGBADYiALBiTUJdQ1ghYDYkAMiAExIAbEgBiIkAEJ9QiDksWITWVqpkAMiAExIAbEgBgQA3ExIKEuoa4RtBgQA2JADIgBMSAGxECEDEioRxgUjWbjGs0qHoqHGBADYkAMiAExkAUDEuoS6hpBiwExIAbEgBgQA2JADETIgIR6hEHJYsSmMjVTIAbEgBgQA2JADIiBuBiQUJdQ1whaDIgBMSAGxIAYEANiIEIGJNQjDIpGs3GNZhUPxUMMiAExIAbEgBjIggEJdQl1jaDFgBgQA2JADIgBMSAGImRAQj3CoGQxYlOZmikQA2JADIgBMSAGxEBcDEioS6hrBC0GxIAYEANiQAyIATEQIQMS6hEGRaPZuEaziofiIQbEgBgQA2JADGTBgIS6hLpG0GJADIgBMSAGxIAYEAMRMiChHmFQshixqUzNFIgBMSAGxIAYEANiIC4GJNQl1DWCFgNiQAyIATEgBsSAGIiQAQn1CIOi0Wxco1nFQ/EQA2JADIgBMSAGsmBAQl1CXSNoMSAGxIAYEANiQAyIgQgZkFCPMChZjNhUpmYKxIAYEANiQAyIATEQFwMS6hLqGkGLATEgBsSAGBADYkAMRMiAhHqEQdFoNq7RrOKheIgBMSAGxIAYEANZMCChLqGuEbQYEANiQAyIATEgBsRAhAxIqEcYlCxGbCpTMwViQAyIATEgBsSAGIiLAQl1CXWNoMWAGBADYkAMiAExIAYiZEBCPcKgaDQb12hW8VA8xIAYEANiQAyIgSwYkFCXUNcIWgyIATEgBsSAGBADYiBCBiTUIwxKFiM2lamZAjEgBsSAGBADYkAMxMWAhLqEukbQYkAMiAExIAbEgBgQAxEyIKEeYVA0mo1rNKt4KB5iQAyIATEgBsRAFgxIqEuoawQtBsSAGBADYkAMiAExECEDEuoRBiWLEZvK1EyBGBADYkAMiAExIAbiYkBCXUJdI2gxIAbEgBgQA2JADIiBCBmQUI8wKBrNxjWaVTwUDzEgBsSAGBADYiALBiTUJdQ1ghYDYkAMiAExIAbEgBiIkAEJ9QiDksWITWVqpkAMiAExIAbEgBgQA3ExIKEuoa4RtBgQA2JADIgBMSAGxECEDEioRxgUjWbjGs0qHoqHGBADYkAMiAExkAUDEuoS6hpBiwExIAbEgBgQA2JADETIgIR6hEHJYsSmMjVTIAbEgBgQA2JADIiBuBiQUJdQ1whaDIgBMSAGxIAYEANiIEIGJNQjDIpGs3GNZhUPxUMMiAExIAbEgBjIggEJdQl1jaDFgBgQA2JADIgBMSAGImRAQj3CoGQxYlOZmikQA2JADIgBMSAGxEBcDEioS6hrBC0GxIAYEANiQAyIATEQIQMS6hEGRaPZuEaziofiIQbEgBgQA2JADGTBgIS6hLpG0GJADIgBMSAGxIAYEAMRMiChHmFQshixqUzNFIgBMSAGxIAYEANiIC4GJNQl1DWCFgNiQAyIATEgBsSAGIiQAQn1CIOi0Wxco1nFQ/EQA2JADIgBMSAGsmBAQl1CXSNoMSAGxIAYEANiQAyIgQgZkFCPMChZjNhUpmYKxIAYEANiQAyIATEQFwMS6hLqGkGLATEgBsSAGBADYkAMRMiAhHqEQdFoNq7RrOKheIgBMSAGxIAYEANZMCChLqGuEbQYEANiQAyIATEgBsRAhAz8f7ek/qjP84vSAAAAAElFTkSuQmCC[/img] [img][/img] 图二 配置2位停止位的实际波形,停止位变成3位宽了 [img][/img]
1830浏览量 5回复量 关注量 -
PWM经过比较器输出波形连体了是什么情况
[color=#333333][backcolor=rgb(255, 255, 255)][font=微软雅黑][size=16px]请问各位,PWM脉冲波形经过图中比较器输出波形前段连体了是什么原因,容值阻值错误了吗[/size][/font][/backcolor][/color]
1373浏览量 3回复量 关注量 -
H桥驱动变压器,输出波形不是正弦波
1、原理图驱动部分,用SPWM驱动H桥 [url=//bbs.21ic.com/data/attachment/album/202104/07/104154mnu4dtoy43klurk0.jpg][img]//bbs.21ic.com/data/attachment/album/202104/07/104154mnu4dtoy43klurk0.jpg[/img][/url] 2、现象 H桥输出波形如图: [url=//bbs.21ic.com/data/attachment/album/202104/07/104334anyidnpi2kid6ddp.jpg][img]//bbs.21ic.com/data/attachment/album/202104/07/104334anyidnpi2kid6ddp.jpg[/img][/url] 加上变压器后H桥的输出波形 [url=//bbs.21ic.com/data/attachment/album/202104/07/104321i7oqh8u7bz8bou2h.jpg][img]//bbs.21ic.com/data/attachment/album/202104/07/104321i7oqh8u7bz8bou2h.jpg[/img][/url] 求大佬指点,为什么会这样?并且变压器的输出不是正弦波
2279浏览量 3回复量 关注量