-
DSP的问题,ccs编译器中乘法与加法的代码运行时间问题 sos
在ccs中编译了一个简单的加法语句,仿真测得花费时间为2个时钟周期;简单的乘法语句也是花费2个时钟周期;移位运算,有的花费2个tclk,有的花费4个甚至更多; 使用的是DSP5509芯片,自带双乘法器和双加法器,所以DSP中运行一个加法,不是应该花费一个时钟周期嘛? 不太懂,希望有大佬可以指点一下学习。
2407浏览量 0回复量 关注量 -
DSP280049远程帧为什么寄存器没有ID的? sos
我使用远程帧自动应答模式但是CAN_IF2ARB寄存器中ID全为0,但是改成数据帧这个寄存器里却会存在正确的ID号,怎么回事呢 [img][/img] [img]**iGwEoIIIRW0lC4OYgAQmgQJow0Aj8/fqwFu7C+eBMIIRE8oVgx7Z4deassFULtnp5IiDgnjOSrrNB0PAZTV35af7WVIr+8+lizZUUowUTAOgkghNbZbnitE0AI6VwIjQiUviUWv0UWZdecRkIoFkbWKBY+8bkIpfxbKe0qTmb/kSp4moLrDdy+6MnaxpUTEWQfk/kCDSEUk+J8pQQQQittONxWCSCEVCwExgRK3xKL3yKL86vPYyHkVmjkkVS62pMKIXlc1ezLkZWjY3lpHse4rsdVkq/40iWo5E2zxge3BwkhFKDmZDsEEELbaUtqwm+N0QcGEhjzlpi/p0gtRhFC8n98akGjrKCkQsjmnAqRoyAaK4RkNap9pKb5WldKBJMVQf5jPaVcpT4qFwIhsHACCKGFNxDuFRFgRagI1/Uaj3lLbJQQkk3Tu4M57K24kBWZhr0uhKRdfEEkoqQNK300ZrOUR1xdr+17NuJF840QCnlwtiUCCKEttSZ1QQjRBwYR0N4C84VOX7xaSGaVRfbi2EdMx5WdJoduIeTbHDdHq29w1abH1Rx/K8/RV4nfmZ39J4qamMoJoXb1hz1CR5ocbYcAQmg7bUlNeDRGHygg0PcWWF98UlRGCLmVmOBRU5M6FUI3Zh+pmEb4+CtJslLkh4nIafb1RFk4V7tEWetR+p+mRRyxR8hx5GBbBBBC22rPa68NK0LX3gMuWf+cEJJN04o6SYXQccOz26Ssrdzk9hH17dtxokYetWnARGjJZmkruHg0ppEibBsEEELbaEdq0RBACNETrpqAKqyumgiVh0A/geFCqD8vLCBwaQIIoUu3AOVfkED7eExdQbqgWxQNgYUTQAgtvIFwr4gAQqgIF8arJGAffyViR/YIdT3yWmVtcRoCkxNACE2OmAJmJIAQmhE2RV2QgLzF5f0oavBG1wVdo2gIrI0AQmhtLYa/XQQQQl10iIMABCAAgYQAQihBQsCKCSCEVtx4uA4BCEDgEgQQQpegTplTEbhaIWQHMh8Y0AfoA/QB+gB94Lr7wNUKob/+nzF8YEAfoA/QB8r7gBUOcCvnBrNlMkMIIYiY0OgD9AH6QFEfQAgt84KO0BrXLgghJsCiCZCBNm6gwQ1uW+oDCCH685b6M0IIIYQQog/QB+gDRX0AIYQQQggZYx49erToz7179xL/bNjbf/y6/mypEakLkxJ9gD4wZx9ACNHf5uxvU5fFihB3gkV3glN3SPJngqUPLL8PIISW30aMo+FthBBCCF1GCH19ME/U/+V5Z/7wtd5hP/ht82vuT7x+e5qPD/bG/jL9bx7o5TBhwIU+UNYHSoTQn1/fmaramw+Ya0+bx+A3GT+EEJ1rUOf6439+Y/7m715wtv/x6Zfmd79/y9hwexHpi9cuNM0EWZnqtzcuX2fXipc4rhFHhZMqQijlS7+HyQl9YIgQcuO7vuEpHLMn+ObmEPKgjw/sAwihgaCufXA9/O/vzd/+7lU3sP7hXz6sj3//r/fr7754nd+t+cOvmlWfcLVGwuPVIgkvnFQRQq7d9HYoWw0gD3h1CqF2tbdZyR05ZpmXGbMz9gGE0Iyw134BESH0X//7k7nz75/XA/Wf/+2BG7B98Wr95RHZrw7mz21byJ1k+khs5KSKEHJtpLYBYwA+hX2gUwgFeY0cs0EeCE/G7bR9ACHEgBt8ERChYwfly3c/qdP94+Ejl74vPjeYA+GjCCObTmzsXh//E4sl2VckNnU8Qsi1Ua4NCJ92ot0aX4QQ/WVLfRohhBAafJH0hc5r79yYv/+nd837nzx06fvi8wNH7hp35on6UVn8SEwmHbHTHo1JXJjWCqMnfmU3a7JZOs9f+PINo2F9ACE0jBP9aR2cEEIIISdkSgft/zx63Jm2Lz4or121sYIlXuU52onYSYWQrBiFe42aQSirRFrcMe91DFj8pZ2W0AcQQvTDJfTDc/mAEEIIdYoZ6Wilb4nFb5FJPtlvTwjFb4od0+SEUBvu7TM6pjHmrzwaG9TGATPGBcw6+gBCCCG0pfkCIdQx2LfU0KfWpfQtsfgtsu7yb8xv2ldsf1P/76Dw8dYxbU4Item11/Bt+yKEuKgzzs/aBxBCCKHjvLx+FgghJshBE+SYt8T8PUNdgyZ4dJXZLN2kRwh1cSRu/RPyWtoQIURfW0tfHeInQgghNEgIjXlLbJAQkkdi3mqO7PdJ9wr1CKHMozHJjz1CTN5DJkVs+vsJQqifEf1oPYwQQgihQUJozFti/ULo+Egs/Pf7InjiR2QSnm6WblaVYns7ECUNb40xMa9nYl56WyGE6EtL76Ml/iGEEEKDhJDtVH1vgfXFxx0zeCQWt4OsFEWrPPnVHU1UNSKI1+eZtOO+x/lpfQIhdBo/+t+y+CGE4gsw54OF0SmDWURQ/g0xY3Sb4wpP+qq9iKHjP12sH4exWXqWNj2lP5B2WReGvvZACK2rvfra89rjEUIIHy6S9AH6AH2gqA8MF0IIhmsXGWuoP0KICbBoAlxDp8ZHLj70gWn7AEJoWr7033n5IoQQQggh+gB9gD5Q1AcQQvNeqBFG0/JGCDEBFk2ADMhpByR84buGPoAQop+uoZ8O9REhhBBCCNEH6AP0gaI+gBBCCA0VGWuwQwgxARZNgGvo1PjIJE0fmLYPIISm5Uv/nZfv1QohO5D5wIA+QB+gD9AH6APX3QeuVggZ/iAAAQhAYBQBKxz4g8BWCCCEttKS1AMCEIDATAQQQjOBpphZCCCEZsFMIRCAAAS2QwAhtJ22pCbGIIToBRCAAAQgUEQAIVSEC+OFE0AILbyBcA8CEIDA0ggghJbWIvhzCgGE0Cn0SAsBCEDgCgkghK6w0TdcZYTQhht38VW7PZhddfylePtr8u6zv8m6f3vY1Xa7w23WhggIQGA6AiVCqBmve5Mf0dP5Sc4QGEIAITSEEjbm4VffmCeffsGR+PSLL81zL75Vh9vAvniX0D9ohZAmaG72jSjS4hBCPkSOITA/gSFCSMZpc3ODEJq/lShxKAGE0FBSV2737Xffm6eefdVReOnOh/XxK2/er7/74l1C/6BDCNVmsmLUsTrkZ8cxBCAwD4FOIRSM61tz2NmbGoTQPC1DKWMIIITGULvSNCKEfvjxJ/Pe/c9rCm+8/cDR6It3hnIQTJgSGH7LXSVaKOTCGQQuSaBTCAWOIYQCHJwskgBCaJHNskynROhY7+6880nt5Gt3P3LO9sU7QzkYIISMuTF7u3fIV0I3+3qPkB9kXJhMvJWpdgfDLiKBzTcEzkcAIXQ+luR0eQIIocu3wWo88IXO3Q9uzPMvv2s+/uyh878v3hnKwSAhJMLGW1p3okcyMkaE0G63M9q+Is+SQwhA4EQCCKETAZJ8UQQQQotqjnU58/Pjx50O98WbQULIapxoj0GHEGIVqLNJiITAWQgghM6CkUwWQgAhtJCGWLobpW+JxW+RqfWbQAixGqSSJhACZyWAEDorTjK7MAGE0IUbYC3Fl74lFr9FptZzkBBqH435+306VoSCfUNqoQRCAAKnEkAInUqQ9EsigBBaUmss2Jcxb4n5e4bUqg0RQq3N8M3SakkEQgACZySAEDojTLK6OAGE0MWbYB0OjHlL7BxCqHl9fmeCfyLNitA6Og1ebpYAQmizTXuVFUMIXWWzl1d6zFtiJwuhVvAk+34QQuUNSAoInJEAQuiMMMnq4gQQQhdvgvU40PcWWF98UtPsozF5Zb4y6p4fhFCCkgAIzEkAITQnbcqamgBCaGrC5J8nIPt//B9blWNVAbVZIYTyTImBwAwEEEIzQKaI2QgghGZDTUEQgAAEtkFguBDaRn2pxbYJIIS23b7UDgIQgMDZCSCEzo6UDC9IACF0QfgUDQEIQGCNBBBCa2w1fM4RQAjlyBAOAQhAAAIqAYSQioXAlRJACK204XAbAhCAwKUIIIQuRZ5ypyCAEJqCKnlCAAIQ2DABhNCGG/cKq3a1QsgOZD4woA/QB+gD9AH6wHX3gasVQlcoeqkyBCAAgbMQsMKBPwhshQBCaCstST0gAAEIzEQAITQTaIqZhQBCaBbMFAIBCEBgOwQQQttpS2piDEKIXgABCEAAAkUEEEJFuDBeOAGE0MIbCPcgAAEILI0AQmhpLYI/pxBACJ1Cj7QQgAAErpAAQugKG33DVUYIbbhxF1817Vfkx/4i/eIri4MQ2A6BIULo9rAzVVUdP/ubkwCMze9m3/iwO9wm5Sd5Wn8zfpbY2oIS+0y+pbZSiSb/vSmmKnOs+NOea3zCsnZGQSgmo7+b9pkm76FOIYSGkrpyu4dffWOefPoFR+HTL740z734lrHh9q8v3iX0DzqEkDYouyY0P1uOIQCBaQn0CaHk4iYX393BpHKk39fR+Um5VWWSOaWef6ILsNjHfpbYGmNK/C2xtaRCgVUqhG7NYVeZyq/fhYWQMYpP/V3irBYIobPi3G5m3373vXnq2VddBV+682F9/Mqb9+vvvniX0D8oFEJ1Upmo5G7Gz49jCEBgFgKdQkgb19arXHifx7l0uXCXX3uBbVelEiF0e6uKMhEawRRTYpvzSwvXwnKsAsEidSsUQnV5uvhL+DiOIr6idF78yYdt3QLmJ2c6PAOE0HBWV28pQuiHH38y793/vObxxtsPHJe+eGcoB9okEAx2MQy/1YkqNOEMAhCYkECXEGpWOLQL9I3Zdzx6yrk7Nr9mntiZw83B7LQVoVyBA+Ygl1SxLfG3xNaVWR+ME0J1ef5qkM1LqUNY1gxCSFbRYt9iRyY6RwhNBHaL2YrQsXW7884ndRVfu/uRq2pfvDOUg5FCyJhxE6oUyzcEIHAagbwQ6nrMEcbJDU2yJ6edF5rwME3odUecf3H3j8MM9LO2/K4VEpcwse3wKXkEVGLrSmwP2rSVJjhjWzlv5s2kXgP4OFGpPNdsxNxxL5if/7A2bv2rWU646iQYlG+EkAKFIJ2AL3TufnBjnn/5XfPxZw+dcV+8M5SDdhIJlkMHDEr3TLloEpBC+YYABE4lkBdC3Tcp8QpIc+5f/GJxUJZfU68oj0FzypGIXNiDeekYHRyltiX+ltgGxdplnGavT8kcmBMaA/joQqj131/Faed0X9z2t3Fbt9aPIdxjGqeeI4ROJXjF6X9+/Liz9n3x6p6BAYPSFtoMrpK7oU5XiYQABAoIZIVQO379C6GfbTJuI/vkghvF+3nZ4yQ/F+aJq4Fzis3PrWD4F/e40PZctS3xt8Q28aFcCDX+KnOm+OG/4acee0wd5zS/RPhI/q3CSdrY1a0RVv6Kkoua+AAhNDHgrWRf+pZY/BaZymH0ipA+AaplEAgBCJydwNmEkCc+9jfKCkl0EY0rEgshESfBqkKbR98FtsnLPuJJL+56uYptib8ltrEDI1aE6vppAm8An1S8KG3V+qi1wTEsn86tcgWNl1R8kgCE0CRYt5dp6Vti8VtkKpHRQiha+lYzJxACEJiKQFYI9ezfi4VL45+sbijCoiS/dj5JBE/fhV4EiV0F0YSCD7HXtutCH9/Aldj6TthjYdYv2iTlWYWQz0FdPapMqGfEX62NxcPWJkwokZN+I4QmxbudzMe8JebvGVJJjBVCMggvMGDUehAIgSsj0CuEVEHRXuiSOO8imcS1YiEJt8D9/Lw8Mhdm+eeOgVBq5yAbF4Rr7TnIdqi/toAS29ghqe+FhdDgOVj87RKbrc3gPGMm488RQuPZXVXKMW+JTSWE0mXaq2oKKguBixPIC6F41cN3VV8BceP5sK//C3UsSPRVJJuvnp9fYn3c3jjF+cpr41UV7n1J0tsAufkaYFvib4lt6JcIi+FCqOGs2Of4eAW6NnJvjXWJOC9he+jSZ9q4MWvyTNopze7sIQihsyPdZoZj3hKbRAjllr+3iZ1aQWCRBLqEkPoShK1FPXYj0SECo10FaIRBZNOO+WShQMtPo5W50DdlxY9wtAxE3A2zLar/6LqVCyGVv61uho9PwgkZJ4SESdRWfiI5HtLGnh9JO0s+E34jhCaEu7Ws+94C64tPeGiTQHZQysAfOBklhREAAQici0CnEJJHVv6m4+hi2PghY9q7mIpd8ChM7LzVDLEbctVU55Q2z6CcHJ0SW5tHib8ltr5/Sjo/WjtWOYwXQiKgks3ldl537SJ+9rVxRihr9ZggDCE0AVSyHEigQwjJ8/zg2w2ugfljBgEITEKgWwg1RcqKi4zhePhKfPwopFl9SH/8VOxz+WUrqgqA9tFO534iEV4ltkcvSvwtsW1KEIEhPh7LzR+1aWLxp/IJc9FWhBoLhY3X0FKvIW1c28a+hW5MdoYQmgwtGUMAAhDYJoEhQmibNV95reqbT291ZinVacWYp6Fm9QwhNCtuCoMABCCwfgIIobW2YbsqdCnFkcF2ydUg6xJCKNMwBEMAAhCAgE4AIaRzWUVou/py3MdzWa+bx2eXXaVCCF22D1A6BCAAgdURQAitrslwuIMAQqgDDlEQgAAEIJASQAilTAhZLwGE0HrbDs8hAAEIXIQAQugi2Cl0IgL/Dwism1rZgDZmAAAAAElFTkSuQmCC[/img]
1995浏览量 0回复量 关注量 -
GD32FFPRTGU6 DSP指令集和专用浮点运算单元(FPU) 的使用方法 sos
[i=s] 本帖最后由 yupanshanhou 于 2021-5-14 14:40 编辑 [/i] [font=微软雅黑][color=#8b0000][backcolor=rgb(255, 255, 255)][size=16px]全新GD32FFPR系列指纹专用MCU采用168MHz高性能ARM[/size][/backcolor]®[backcolor=rgb(255, 255, 255)][size=16px] Cortex[/size][/backcolor]®[backcolor=rgb(255, 255, 255)][size=16px]-M4内核,[/size][/backcolor][/color][/font][font=微软雅黑][color=#8b0000][backcolor=rgb(255, 255, 255)][size=16px]提供了完整的DSP指令集和专用浮点运算单元(FPU),可直接支持三角函数、滤波和卷积等复杂运算以加快指纹算法执行速度。[/size][/backcolor][/color][/font] [font=微软雅黑][color=#8b0000][backcolor=rgb(255, 255, 255)][size=16px]内核访问闪存高速零等待,最高主频下的工作性能可达210DMIPS,CoreMark[/size][/backcolor]®[backcolor=rgb(255, 255, 255)][size=16px]测试可达565分。[/size][/backcolor][/color][/font] [font=微软雅黑][color=#8b0000][backcolor=rgb(255, 255, 255)][size=16px]从而以增强的动力支持高级指纹识别运算的全过程,[/size][/backcolor][/color][/font] [font=微软雅黑][color=#8b0000][backcolor=rgb(255, 255, 255)][size=16px]包括指纹图像预处理、分割拼接、数据特征提取、特征匹配、交叉比对、识别解锁等一系列指令,[/size][/backcolor][/color][/font] [font=微软雅黑][color=#8b0000][backcolor=rgb(255, 255, 255)][size=16px]更可显著提高指纹注册和匹配效率。[/size][/backcolor][/color][/font] [font=微软雅黑][color=#8b0000][backcolor=rgb(255, 255, 255)][size=16px]芯片更配备了1MB的大容量内置Flash和多达128KB的SRAM,[/size][/backcolor][/color][/font] [font=微软雅黑][color=#8b0000][backcolor=rgb(255, 255, 255)][size=16px]可支持多枚指纹信息存储和动态分配内存等识别过程的资源开销。[/size][/backcolor][/color][/font] [color=#0000ff][font=宋体][backcolor=rgb(255, 255, 255)][size=16px](以上文字来源: [/size][/backcolor][/font][font=宋体][backcolor=rgb(255, 255, 255)][size=16px]https://www.21ic.com/np/mcu/201707/727572.htm[/size][/backcolor][/font][font=宋体][backcolor=rgb(255, 255, 255)][size=16px])[/size][/backcolor][/font][/color] [color=#333333][font=宋体][backcolor=rgb(255, 255, 255)][size=7]请问哪位知道[/size][/backcolor][/font][/color] [color=#333333][font=宋体][size=5][backcolor=rgb(255, 255, 255)][b]1.这款芯片的DSP指令集是否就是ARM官方提供的DSP指令集?[/b][/backcolor][/size][/font][/color] [b][size=5][color=#333333][font=宋体][backcolor=rgb(255, 255, 255)]2.专用的FPU有什么特殊用法吗?[/backcolor][/font][/color] [color=#333333][font=宋体][backcolor=rgb(255, 255, 255)]3.这款芯片与STM32M4系列的单片机相比,使用DSP库的方法是否完全一样?[/backcolor][/font][/color][/size][/b]
2504浏览量 0回复量 关注量 -
2.4G发射接收低噪声问题
目前有做1他2.4G 装置,发射板咪头拾取声音到DSP通过2.4G模块发射出去, 然后接收板这边通过2.4G模块接收给到DSP再输出给运放最后到喇叭。 现在发现单上电接收板,喇叭基本上没有噪声。 一接上发射板(注意这时候我没有接咪头,所以不会拾取外界声音信号),喇叭就有比较大的低噪声。这说明低噪声来自发射板,那么这个问题要怎么解决?方向在哪里?是发射板布线还是2.4G高频信号的影响?
3959浏览量 8回复量 关注量 -
想请问大家有做过DSP多机重联,错相PWM输出的吗? sos
想用DSP做多模块Buck变换器的并联错相控制,但是多台控制器DSP之间的时间要如何实现同步呢?想问一下有没有做过的朋友?
1328浏览量 0回复量 关注量