;========================================= ; NAME: 2440INIT.S ; DESC: C start up codes ; Configure memory, ISR ,stacks ; Initialize C-variables ; HISTORY: ; 2002.02.25:kwtark: ver 0.0 ; 2002.03.20:purnnamu: Add some functions for testing STOP,Sleep mode ; 2003.03.14:DonGo: Modified for 2440. ;=========================================
GET option.inc GET memcfg.inc GET 2440addr.inc
BIT_SELFREFRESH EQU (1<<22) ;bit[22]=1,others=0
;Pre-defined constants ;系统的工作模式设定 USERMODE EQU 0x10 FIQMODE EQU 0x11 IRQMODE EQU 0x12 SVCMODE EQU 0x13 ABORTMODE EQU 0x17 UNDEFMODE EQU 0x1b MODEMASK EQU 0x1f NOINT EQU 0xc0
;The location of stacks ;系统的堆栈空间设定 UserStack EQU (_STACK_BASEADDRESS-0x3800) ;0x33ff4800 ~ SVCStack EQU (_STACK_BASEADDRESS-0x2800) ;0x33ff5800 ~ UndefStack EQU (_STACK_BASEADDRESS-0x2400) ;0x33ff5c00 ~ AbortStack EQU (_STACK_BASEADDRESS-0x2000) ;0x33ff6000 ~ IRQStack EQU (_STACK_BASEADDRESS-0x1000) ;0x33ff7000 ~ FIQStack EQU (_STACK_BASEADDRESS-0x0) ;0x33ff8000 ~
;arm处理器有两种工作状态 1.arm:32位 这种工作状态下执行字对准的arm指令 2.Thumb:16位 这种工作状 ;态执行半字对准的Thumb指令 ;因为处理器分为16位 32位两种工作状态 程序的编译器也是分16位和32两种编译方式 所以下面的程序用 ;于根据处理器工作状态确定编译器编译方式 ;code16伪指令指示汇编编译器后面的指令为16位的thumb指令 ;code32伪指令指示汇编编译器后面的指令为32位的arm指令 ;这段是为了统一目前的处理器工作状态和软件编译方式(16位编译环境使用tasm.exe编译 ;Check if tasm.exe(armasm -16 ...@ADS 1.0) is used.
GBLL THUMBCODE ;定义一个全局变量 [ {CONFIG} = 16 ;if config==16 这里表示你的目前处于领先地16位编译方式 THUMBCODE SETL {TRUE} ;设置THUMBCODE 为 true表示告诉系统当前想用thumb,但实际启动时不行,只能启动后再跳 ; ][|]表示if else endif CODE32 ;启动时强制使用32位编译模式 | THUMBCODE SETL {FALSE} ;如果系统要求是ARM指令,则直接设置THUMBCODE 为 false 说明当前的是32位编译模式 ]
MACRO ;宏定义 MOV_PC_LR [ THUMBCODE bx lr | mov pc,lr ] MEND
MACRO MOVEQ_PC_LR [ THUMBCODE bxeq lr ;相等Z=1,则跳转 | moveq pc,lr ] MEND
;注意下面这段程序是个宏定义 很多人对这段程序不理解 我再次强调这是一个宏定义 所以大家要注意了 ;下面包含的HandlerXXX HANDLER HandleXXX将都被下面这段程序展开 ;这段程序用于把中断服务程序的首地址装载到pc中,有人称之为“加载程序”。 ;本初始化程序定义了一个数据区(在文件最后),34个字空间,存放相应中断服务程序的首地址。每个字 ;空间都有一个标号,以Handle***命名。 ;在向量中断模式下使用“加载程序”来执行中断服务程序。 ;这里就必须讲一下向量中断模式和非向量中断模式的概念 ;向量中断模式是当cpu读取位于0x18处的IRQ中断指令的时候,系统自动读取对应于该中断源确定地址上的; ;指令取代0x18处的指令,通过跳转指令系统就直接跳转到对应地址 ;函数中 节省了中断处理时间提高了中断处理速度标 例如 ADC中断的向量地址为0xC0,则在0xC0处放如下 ;代码:ldr PC,=HandlerADC 当ADC中断产生的时候系统会 ;自动跳转到HandlerADC函数中 ;非向量中断模式处理方式是一种传统的中断处理方法,当系统产生中断的时候,系统将interrupt ;pending寄存器中对应标志位置位 然后跳转到位于0x18处的统一中断 ;函数中 该函数通过读取interrupt pending寄存器中对应标志位 来判断中断源 并根据优先级关系再跳到 ;对应中断源的处理代码中
MACRO $HandlerLabel HANDLER $HandleLabel
$HandlerLabel sub sp,sp,#4 ;decrement sp(to store jump address) stmfd sp!,{r0} ;PUSH the work register to stack(lr does't push because it return to original address) ldr r0,=$HandleLabel;load the address of HandleXXX to r0 ldr r0,[r0] ;load the contents(service routine start address) of HandleXXX str r0,[sp,#4] ;store the contents(ISR) of HandleXXX to stack ldmfd sp!,{r0,pc} ;POP the work register and pc(jump to ISR) MEND ;将$HandleLabel地址空间中的数据给PC,中断服务程序的入口
IMPORT |Image$$RO$$Limit| ; End of ROM code (=start of ROM data) IMPORT |Image$$RW$$Base| ; Base of RAM to initialise IMPORT |Image$$ZI$$Base| ; Base and limit of area IMPORT |Image$$ZI$$Limit| ; to zero initialise
IMPORT Main ;导入要用到的字符常量
AREA Init,CODE,READONLY
;异常中断矢量表(每个表项占4个字节) 下面是中断向量表 一旦系统运行时有中断发生 即使移植了操作 ;系统 如linux 处理器已经把控制权交给了操作系统 一旦发生中断 处理器还是会跳转到从0x0开始 ;中断向量表中某个中断表项(依据中断类型)开始执行 ;具体中断向量布局请参考s3c44b0 spec 例如 adc中断向量为 0x000000c0下面对应表中第49项位置 向量地址0x0+4*(49-1)=0x000000c0
ENTRY ;板子上电和复位后 程序开始从位于0x0处开始执行硬件刚刚上电复位后 程序从这里开始执行跳转到标 ;为ResetHandler处执行
;1)The code, which converts to Big-endian, should be in little endian code. ;2)The following little endian code will be compiled in Big-Endian mode. ; The code byte order should be changed as the memory bus width. ;3)The pseudo instruction,DCD can't be used here because the linker generates error. ;条件编译,在编译成机器码前就设定好 ASSERT :DEF:ENDIAN_CHANGE ;判断ENDIAN_CHANGE是否已定义 [ ENDIAN_CHANGE ;如果已经定义了ENDIAN_CHANGE,则判断,here is FALSE ASSERT :DEF:ENTRY_BUS_WIDTH ;判断ENTRY_BUS_WIDTH是否已定义 ][ ENTRY_BUS_WIDTH=32 ;如果已经定义了ENTRY_BUS_WIDTH,则判断是不是为32 b ChangeBigEndian ;DCD 0xea000007 ] ;在bigendian中,地址为A的字单元包括字节单元A,A+1,A+2,A+3,字节单元由高位到低位为A,A+1,A+2,A+3 ; 地址为A的字单元包括半字单元A,A+2,半字单元由高位到低位为A,A+2 [ ENTRY_BUS_WIDTH=16 andeq r14,r7,r0,lsl #20 ;DCD 0x0007ea00 也是b ChangeBigEndian指令,只是由于总线不一样而取机器码的顺序不一样 ] ;先取低位->高位 上述指令是通过机器码装换而来的
[ ENTRY_BUS_WIDTH=8 streq r0,][r0,-r10,ror #1] ;DCD 0x070000ea 也是b ChangeBigEndian指令,只是由于总线不一样而取机器码的顺序不一样 ] | b ResetHandler ;//here is the first instrument 0x00 ] b HandlerUndef ;handler for Undefined mode ;0x04 b HandlerSWI ;handler for SWI interrupt ;0x08 b HandlerPabort ;handler for PAbort ;0x0c b HandlerDabort ;handler for DAbort ;0x10 b . ;reserved ;0x14 b HandlerIRQ ;handler for IRQ interrupt ;0x18 b HandlerFIQ ;handler for FIQ interrupt ;0x1c
;@0x20 b EnterPWDN ; Must be @0x20.
;通过设置CP15的C1的位7,设置存储格式为Bigendian,三种总线方式 ChangeBigEndian ;//here ENTRY_BUS_WIDTH=16 ;@0x24 [ ENTRY_BUS_WIDTH=32 DCD 0xee110f10 ;0xee110f10 => mrc p15,0,r0,c1,c0,0 DCD 0xe3800080 ;0xe3800080 => orr r0,r0,#0x80; //Big-endian DCD 0xee010f10 ;0xee010f10 => mcr p15,0,r0,c1,c0,0 ;对存储器控制寄存器操作,指定内存模式为Big-endian ;因为刚开始CPU都是按照32位总线的指令格式运行的,如果采用其他的话,CPU别不了,必须转化 ;但当系统初始化好以后,则CPU能自动识别 ] [ ENTRY_BUS_WIDTH=16 DCD 0x0f10ee11 DCD 0x0080e380 DCD 0x0f10ee01 ;因为采用Big-endian模式,采用16位总线时,物理地址的高位和数据的地位对应 ;所以指令的机器码也相应的高低对调 ] [ ENTRY_BUS_WIDTH=8 DCD 0x100f11ee DCD 0x800080e3 DCD 0x100f01ee ] DCD 0xffffffff ;swinv 0xffffff is similar with NOP and run well in both endian mode. DCD 0xffffffff DCD 0xffffffff DCD 0xffffffff DCD 0xffffffff b ResetHandler
;Function for entering power down mode ; 1. SDRAM should be in self-refresh mode. ; 2. All interrupt should be maksked for SDRAM/DRAM self-refresh. ; 3. LCD controller should be disabled for SDRAM/DRAM self-refresh. ; 4. The I-cache may have to be turned on. ; 5. The location of the following code may have not to be changed.
;void EnterPWDN(int CLKCON); EnterPWDN mov r2,r0 ;r2=rCLKCON 保存原始数据 0x4c00000c 使能各模块的时钟输入 tst r0,#0x8 ;测试bit[3] SLEEP mode? 1=>sleep bne ENTER_SLEEP ;C=0,即TST结果非0,bit[3]=1
;//进入PWDN后如果不是sleep则进入stop
;//进入Stop mode ENTER_STOP ldr r0,=REFRESH ;0x48000024 DRAM/SDRAM refresh config ldr r3,[r0] ;r3=rREFRESH mov r1, r3 orr r1, r1, #BIT_SELFREFRESH ;Enable SDRAM self-refresh str r1, [r0] ;Enable SDRAM self-refresh ;//Enable SDRAM self-refresh mov r1,#16 ;wait until self-refresh is issued. may not be needed. 0 subs r1,r1,#1 bne %B0 ;//wait 16 fclks for self-refresh ldr r0,=CLKCON ;enter STOP mode. str r2,[r0] ;//??????????????
mov r1,#32 0 subs r1,r1,#1 ;1) wait until the STOP mode is in effect. bne %B0 ;2) Or wait here until the CPU&Peripherals will be turned-off ;Entering SLEEP mode, only the reset by wake-up is available.
ldr r0,=REFRESH ;exit from SDRAM self refresh mode. str r3,[r0]
MOV_PC_LR ;back to main process
ENTER_SLEEP ;NOTE. ;1) rGSTATUS3 should have the return address after wake-up from SLEEP mode.
ldr r0,=REFRESH ldr r1,[r0] ;r1=rREFRESH orr r1, r1, #BIT_SELFREFRESH str r1, [r0] ;Enable SDRAM self-refresh ;//Enable SDRAM self-refresh
mov r1,#16 ;Wait until self-refresh is issued,which may not be needed. 0 subs r1,r1,#1 bne %B0 ;//Wait until self-refresh is issued,which may not be needed
ldr r1,=MISCCR ;IO register ldr r0,[r1] orr r0,r0,#(7<<17) ;Set SCLK0=1, SCLK1=1, SCKE=1. str r0,[r1]
ldr r0,=CLKCON ; Enter sleep mode str r2,[r0]
b . ;CPU will die here. ;//进入Sleep Mode,1)设置SDRAM为self-refresh ;// 2)设置MISCCR bit[17] 1:sclk0=sclk 0:sclk0=0 ;// bit[18] 1:sclk1=sclk 0:sclk1=0 ;// bit[19] 1:Self refresh retain enable ;// 0:Self refresh retain disable ;// When 1, After wake-up from sleep, The self-refresh will be retained.
WAKEUP_SLEEP ;Release SCLKn after wake-up from the SLEEP mode. ldr r1,=MISCCR ldr r0,[r1] bic r0,r0,#(7<<17) ;SCLK0:0->SCLK, SCLK1:0->SCLK, SCKE:0->=SCKE. str r0,[r1] ;//设置MISCCR
;Set memory control registers ldr r0,=SMRDATA ldr r1,=BWSCON ;BWSCON Address ;//总线宽度和等待控制寄存器 add r2, r0, #52 ;End address of SMRDATA 0 ldr r3, [r0], #4 ;数据处理后R0自加4,[R0]->R3,R0+4->R0 str r3, [r1], #4 cmp r2, r0 bne %B0 ;//设置所有的memory control register,他的初始地址为BWSCON,初始化 ;//数据在以SMRDATA为起始的存储区
mov r1,#256 0 subs r1,r1,#1 ;1) wait until the SelfRefresh is released. bne %B0 ;//1) wait until the SelfRefresh is released.
ldr r1,=GSTATUS3 ;GSTATUS3 has the start address just after SLEEP wake-up ldr r0,[r1]
mov pc,r0 ;//跳出Sleep Mode,进入Sleep状态前的PC
;//异常中断宏调用 LTORG HandlerFIQ HANDLER HandleFIQ HandlerIRQ HANDLER HandleIRQ HandlerUndef HANDLER HandleUndef HandlerSWI HANDLER HandleSWI HandlerDabort HANDLER HandleDabort HandlerPabort HANDLER HandlePabort
IsrIRQ sub sp,sp,#4 ;reserved for PC stmfd sp!,{r8-r9}
ldr r9,=INTOFFSET ;地址为0x4a000014的空间存着中断的偏移 ldr r9,[r9] ;I_ISR ldr r8,=HandleEINT0 add r8,r8,r9,lsl #2 ldr r8,[r8] str r8,[sp,#8] ldmfd sp!,{r8-r9,pc} ;//外部中断号判断,通过中断服务程序入口地址存储器的地址偏移确定 ;//PC=[HandleEINT0+][INTOFFSET]]
;======= ; ENTRY ;扳子上电和复位后 程序开始从位于0x0执行b ResetHandler 程序从跳转到这里执行 ;板子上电复位后 执行几个步骤这里通过标号在注释中加1,2,3....标示 标号表示执行顺序 ;1.禁止看门狗 屏蔽所有中断 ;======= ResetHandler
;//1.禁止看门狗 屏蔽所有中断 ldr r0,=WTCON ;watch dog disable ldr r1,=0x0 str r1,[r0]
ldr r0,=INTMSK ldr r1,=0xffffffff ;all interrupt disable str r1,[r0]
ldr r0,=INTSUBMSK ldr r1,=0x3ff ;all sub interrupt disable str r1,[r0]
[ {FALSE} ;//rGPFDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4); ;//Led_Display ldr r0,=GPFCON ;//F-IO In/Out config 10 10 10 10 00 00 00 00 ldr r1,=0x5500 ;//00 = Input 01 = Output str r1,][r0] ;//10 = EINT[0] 11 = Reserved ldr r0,=GPFDAT ;//F-IO data register ldr r1,=0x10 str r1,[r0] ]
;//2.根据工作频率设置pll ;这里介绍一下计算公式 ;//Fpllo=(m*Fin)/(p*2^s) ;//m=MDIV+8,p=PDIV+2,s=SDIV ;The proper range of P and M: 1<=P<=62, 1<=M<=248
;Fpllo必须大于20Mhz小于66Mhz ;Fpllo*2^s必须小于170Mhz ;如下面的PLLCON设定中的M_DIV P_DIV S_DIV是取自option.h中 ;#elif (MCLK==40000000) ;#define PLL_M (0x48) ;#define PLL_P (0x3) ;#define PLL_S (0x2) ;所以m=MDIV+8=80,p=PDIV+2=5,s=SDIV=2 ;硬件使用晶振为10Mhz,即Fin=10Mhz ;Fpllo=80*10/5*2^2=40Mhz
;To reduce PLL lock time, adjust the LOCKTIME register. ldr r0,=LOCKTIME ldr r1,=0xffffff str r1,[r0] ;//设置PLL的重置延迟
[ PLL_ON_START ; Added for confirm clock divide. for 2440. ; Setting value Fclk:Hclk:Pclk ldr r0,=CLKDIVN ldr r1,=CLKDIV_VAL ; 0=1:1:1, 1=1:1:2, 2=1:2:2, 3=1:2:4, 4=1:4:4, 5=1:4:8, 6=1:3:3, 7=1:3:6. str r1,][r0] ;//数据表示分频数
;//Configure UPLL Fin=12.0MHz UFout=48MHz ldr r0,=UPLLCON ldr r1,=((U_MDIV<<12)+(U_PDIV<<4)+U_SDIV) ;//USB PLL CONFIG str r1,[r0] nop ;// Caution: After UPLL setting, at least 7-clocks delay must be inserted for setting hardware be completed. nop nop nop nop nop nop ;//Configure MPLL Fin=12.0MHz MFout=304.8MHz ldr r0,=MPLLCON ldr r1,=((M_MDIV<<12)+(M_PDIV<<4)+M_SDIV) str r1,[r0] ] ;//Check if the boot is caused by the wake-up from SLEEP mode. ldr r1,=GSTATUS2 ldr r0,[r1] tst r0,#0x2 ;test if bit[1] is 1 or 0 0->C=1 ; 1->C=0 ;In case of the wake-up from SLEEP mode, go to SLEEP_WAKEUP handler. bne WAKEUP_SLEEP ;C=0,jump
EXPORT StartPointAfterSleepWakeUp StartPointAfterSleepWakeUp
;//3.置存储相关寄存器的程序 ;这是设置SDRAM,flash ROM 存储器连接和工作时序的程序,片选定义的程序 ;SMRDATA map在下面的程序中定义 ;SMRDATA中涉及的值请参考memcfg.s程序 ;具体寄存器各位含义请参考s3c44b0 spec ;Set memory control registers ldr r0,=SMRDATA ldr r1,=BWSCON ;BWSCON Address add r2, r0, #52 ;End address of SMRDATA
0 ldr r3, [r0], #4 str r3, [r1], #4 cmp r2, r0 bne %B0 ;//set memory registers
;//4.初始化各模式下的栈指针 ;Initialize stacks bl InitStacks
;//5.设置缺省中断处理函数 ; Setup IRQ handler ldr r0,=HandleIRQ ;This routine is needed ldr r1,=IsrIRQ ;if there isn't 'subs pc,lr,#4' at 0x18, 0x1c str r1,[r0] ;//initialize the IRQ 将普通中断判断程序的入口地址给HandleIRQ
;//6.将数据段拷贝到ram中 将零初始化数据段清零 跳入C语言的main函数执行 到这步结束bootloader初步引导结束 ;If main() is used, the variable initialization will be done in __main(). [ :LNOT:USE_MAIN ;initialized {FALSE} ;Copy and paste RW data/zero initialized data LDR r0, =|Image$$RO$$Limit| ; Get pointer to ROM data LDR r1, =|Image$$RW$$Base| ; and RAM copy LDR r3, =|Image$$ZI$$Base| ;Zero init base => top of initialised data CMP r0, r1 ; Check that they are different just for debug?????????????????????????? BEQ %F2 1 CMP r1, r3 ; Copy init data LDRCC r2, ][r0], #4 ;--> LDRCC r2, [r0] + ADD r0, r0, #4 STRCC r2, [r1], #4 ;--> STRCC r2, [r1] + ADD r1, r1, #4 BCC %B1 2 LDR r1, =|Image$$ZI$$Limit| ; Top of zero init segment MOV r2, #0 3 CMP r3, r1 ; Zero init STRCC r2, [r3], #4 BCC %B3 ]
[ :LNOT:THUMBCODE ;if thumbcode={false} bl main bl Main ;Don't use main() because ...... b . ]
;//if thumbcod={ture} [ THUMBCODE ;for start-up code for Thumb mode orr lr,pc,#1 bx lr CODE16 bl Main ;Don't use main() because ...... b . CODE32 ]
;function initializing stacks InitStacks ;Don't use DRAM,such as stmfd,ldmfd...... ;SVCstack is initialized before ;Under toolkit ver 2.5, 'msr cpsr,r1' can be used instead of 'msr cpsr_cxsf,r1' mrs r0,cpsr bic r0,r0,#MODEMASK orr r1,r0,#UNDEFMODE|NOINT msr cpsr_cxsf,r1 ;UndefMode ldr sp,=UndefStack ; UndefStack=0x33FF_5C00
orr r1,r0,#ABORTMODE|NOINT msr cpsr_cxsf,r1 ;AbortMode ldr sp,=AbortStack ; AbortStack=0x33FF_6000
orr r1,r0,#IRQMODE|NOINT msr cpsr_cxsf,r1 ;IRQMode ldr sp,=IRQStack ; IRQStack=0x33FF_7000
orr r1,r0,#FIQMODE|NOINT msr cpsr_cxsf,r1 ;FIQMode ldr sp,=FIQStack ; FIQStack=0x33FF_8000
bic r0,r0,#MODEMASK|NOINT orr r1,r0,#SVCMODE msr cpsr_cxsf,r1 ;SVCMode ldr sp,=SVCStack ; SVCStack=0x33FF_5800
;USER mode has not be initialized. ;//为什么不用初始化user的stacks,系统刚启动的时候运行在哪个模式下??????????????????? mov pc,lr ;The LR register won't be valid if the current mode is not SVC mode.????????????? ;//系统一开始运行就是SVCmode???????????????????????????????????????? ;===================================================================== ; Clock division test ; Assemble code, because VSYNC time is very short ;===================================================================== EXPORT CLKDIV124 EXPORT CLKDIV144 CLKDIV124 ldr r0, = CLKDIVN ldr r1, = 0x3 ; 0x3 = 1:2:4 str r1, [r0] ; wait until clock is stable nop nop nop nop nop
ldr r0, = REFRESH ldr r1, [r0] bic r1, r1, #0xff bic r1, r1, #(0x7<<8) orr r1, r1, #0x470 ; REFCNT135 str r1, [r0] nop nop nop nop nop mov pc, lr
CLKDIV144 ldr r0, = CLKDIVN ldr r1, = 0x4 ; 0x4 = 1:4:4 str r1, [r0] ; wait until clock is stable nop nop nop nop nop
ldr r0, = REFRESH ldr r1, [r0] bic r1, r1, #0xff bic r1, r1, #(0x7<<8) orr r1, r1, #0x630 ; REFCNT675 - 1520 str r1, [r0] nop nop nop nop nop mov pc, lr
;存储器控制寄存器的定义区 LTORG
SMRDATA DATA ; Memory configuration should be optimized for best performance ; The following parameter is not optimized. ; Memory access cycle parameter strategy ; 1) The memory settings is safe parameters even at HCLK=75Mhz. ; 2) SDRAM refresh period is for HCLK<=75Mhz.
DCD (0+(B1_BWSCON<<4)+(B2_BWSCON<<8)+(B3_BWSCON<<12)+(B4_BWSCON<<16)+(B5_BWSCON<<20)+(B6_BWSCON<<24)+(B7_BWSCON<<28)) DCD ((B0_Tacs<<13)+(B0_Tcos<<11)+(B0_Tacc<<8)+(B0_Tcoh<<6)+(B0_Tah<<4)+(B0_Tacp<<2)+(B0_PMC)) ;GCS0 DCD ((B1_Tacs<<13)+(B1_Tcos<<11)+(B1_Tacc<<8)+(B1_Tcoh<<6)+(B1_Tah<<4)+(B1_Tacp<<2)+(B1_PMC)) ;GCS1 DCD ((B2_Tacs<<13)+(B2_Tcos<<11)+(B2_Tacc<<8)+(B2_Tcoh<<6)+(B2_Tah<<4)+(B2_Tacp<<2)+(B2_PMC)) ;GCS2 DCD ((B3_Tacs<<13)+(B3_Tcos<<11)+(B3_Tacc<<8)+(B3_Tcoh<<6)+(B3_Tah<<4)+(B3_Tacp<<2)+(B3_PMC)) ;GCS3 DCD ((B4_Tacs<<13)+(B4_Tcos<<11)+(B4_Tacc<<8)+(B4_Tcoh<<6)+(B4_Tah<<4)+(B4_Tacp<<2)+(B4_PMC)) ;GCS4 DCD ((B5_Tacs<<13)+(B5_Tcos<<11)+(B5_Tacc<<8)+(B5_Tcoh<<6)+(B5_Tah<<4)+(B5_Tacp<<2)+(B5_PMC)) ;GCS5 DCD ((B6_MT<<15)+(B6_Trcd<<2)+(B6_SCAN)) ;GCS6 DCD ((B7_MT<<15)+(B7_Trcd<<2)+(B7_SCAN)) ;GCS7 DCD ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Trc<<18)+(Tchr<<16)+REFCNT)
DCD 0x32 ;SCLK power saving mode, BANKSIZE 128M/128M
DCD 0x30 ;MRSR6 CL=3clk DCD 0x30 ;MRSR7 CL=3clk
ALIGN
AREA RamData, DATA, READWRITE
^ _ISR_STARTADDRESS ; _ISR_STARTADDRESS=0x33FF_FF00 HandleReset # 4 HandleUndef # 4 HandleSWI # 4 HandlePabort # 4 HandleDabort # 4 HandleReserved # 4 HandleIRQ # 4 HandleFIQ # 4
;Don't use the label 'IntVectorTable', ;The value of IntVectorTable is different with the address you think it may be. ;IntVectorTable ;@0x33FF_FF20 HandleEINT0 # 4 HandleEINT1 # 4 HandleEINT2 # 4 HandleEINT3 # 4 HandleEINT4_7 # 4 HandleEINT8_23 # 4 HandleCAM # 4 ; Added for 2440. HandleBATFLT # 4 HandleTICK # 4 HandleWDT # 4 HandleTIMER0 # 4 HandleTIMER1 # 4 HandleTIMER2 # 4 HandleTIMER3 # 4 HandleTIMER4 # 4 HandleUART2 # 4 ;@0x33FF_FF60 HandleLCD # 4 HandleDMA0 # 4 HandleDMA1 # 4 HandleDMA2 # 4 HandleDMA3 # 4 HandleMMC # 4 HandleSPI0 # 4 HandleUART1 # 4 HandleNFCON # 4 ; Added for 2440. HandleUSBD # 4 HandleUSBH # 4 HandleIIC # 4 HandleUART0 # 4 HandleSPI1 # 4 HandleRTC # 4 HandleADC # 4 ;@0x33FF_FFA0 END
|