320f28335 我编写的程序在ram中运行没有问题。 在flash中不能运行。我学习了你们的帮助文档,下载了你们的在flash中运行的实例,发现可以在flash中运行。我讲实例稍微修改,只修改了bss和ebss部分从l4ram改为外部存储器extmem0,发现程序下载后能正常运行,但是将cpu复位后运行就不对了。。如果问题解决,请回邮件到huangpeng8@163.com.谢谢。
我用的是F28335_example_BIOS_flash.pjt项目文件
我将我的电机控制程序按例子做了修改,发现相同的问题,就是下载到flash后能运行正常,但是断电再运行,就不正常了。如果这是接上调试器运行,发现能运行到main函数,但是不能运行到我定义的各个进程。
1. 请确认你的boot 模式是否设置为Flash模式,即需要设置有关boot的GPIO的状态。 2. 你的外部存储器extmem0是指什么地址? 最后发现问题和外部ram无关。只要关电源再开机,机器都会运行都FXN_F_selfLoop函数而死机。问题还是没有解决
您好!请在Code Start Branch.asm中,将XINTF引脚配置成XINTF,因为默认是GPIO。再尝试一下。 具体的可以参考下面的代码: *********************************************************************** WD_DISABLE .set 1 ;set to 1 to disable WD, else set to 0 .ref _c_int00 .global code_start .ref _InitSysCtrl ;开外设 .ref _xintf_zone6and7_timing ;初始化XINTF总线为16BIT(用户的系统硬件设计相关) *********************************************************************** * Function: codestart section * * Description: Branch to code starting point *********************************************************************** .sect "codestart" code_start: .if WD_DISABLE == 1 LB wd_disable ;Branch to watchdog disable code .else LB _c_int00 ;Branch to start of boot.asm in RTS library .endif ;end codestart section *********************************************************************** * Function: wd_disable * * Description: Disables the watchdog timer *********************************************************************** .if WD_DISABLE == 1 .text wd_disable: SETC OBJMODE ;Set OBJMODE for 28x object code EALLOW ;Enable EALLOW protected register access MOVZ DP, #7029h>>6 ;Set data page for WDCR register MOV @7029h, #0068h ;Set WDDIS bit in WDCR to disable WD EDIS LCR _InitSysCtrl LCR _xintf_zone6and7_timing ;Disable EALLOW protected register access LB _c_int00 ;Branch to start of boot.asm in RTS library .endif ;end wd_disable .end 谢谢, extmem0 地址:0x100000,len:0x30000. void UserInit(void) { #ifdef EXAMPLE_FLASH // EXAMPLE_FLASH, if defined, is in CCS project options // Section .trcdata is generated by DSP/BIOS. // It must be copied from its load to its run address BEFORE main(). memcpy(&trcdata_runstart, &trcdata_loadstart, &trcdata_loadend - &trcdata_loadstart); #endif //--- CPU Initialization InitSysCtrl(); // Initialize the CPU InitPieCtrl(); // Initialize and enable the PIE InitWatchdog(); // Initialize the Watchdog Timer InitGpio(); // Initialize the shared GPIO pins InitXintf(); 。。。 void InitXintf(void) { EALLOW; XintfRegs.XINTCNF2.bit.XTIMCLK = 1; // write buffering while(XintfRegs.XINTCNF2.bit.WLEVEL != 0); // poll the WLEVEL bit; XintfRegs.XINTCNF2.bit.WRBUFF = 3; // XCLKOUT is disabled XintfRegs.XINTCNF2.bit.CLKOFF = 1; // XCLKOUT = XTIMCLK XintfRegs.XINTCNF2.bit.CLKMODE = 0; SysCtrlRegs.PCLKCR3.bit.DMAENCLK = 1; // DMA Clock SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1; // XTIMCLK SysCtrlRegs.PCLKCR3.bit.GPIOINENCLK = 1; // GPIO input clock //all Zone read/write lead/active/trail timing XintfRegs.XTIMING0.bit.X2TIMING = 1;//0;//1; // Zone 0------------------------------------ 。。。 // Zone will not sample XREADY signal XintfRegs.XTIMING0.bit.USEREADY = 0; // XintfRegs.XTIMING0.bit.READYMODE = 1; // sample asynchronous // Size must be either: // 0,1 = x32 or // 1,1 = x16 other values are reserved XintfRegs.XTIMING0.bit.XSIZE = 3; // Zone 6------------------------------------ // When using ready, ACTIVE must be 1 or greater // Lead must always be 1 or greater // Zone write timing XintfRegs.XTIMING6.bit.XWRLEAD = 1;//3; XintfRegs.XTIMING6.bit.XWRACTIVE =1 ;//7; XintfRegs.XTIMING6.bit.XWRTRAIL = 0;//3; // Zone read timing XintfRegs.XTIMING6.bit.XRDLEAD = 1;//3; XintfRegs.XTIMING6.bit.XRDACTIVE = 1;//7; XintfRegs.XTIMING6.bit.XRDTRAIL = 0;//3; // single all Zone read/write lead/active/trail timing XintfRegs.XTIMING6.bit.X2TIMING = 0; // Zone will sample XREADY signal XintfRegs.XTIMING6.bit.USEREADY = 0;// 1; // XintfRegs.XTIMING6.bit.READYMODE = 1; // sample asynchronous // Size must be either: // 0,1 = x32 or // 1,1 = x16 other values are reserved #if DATA_WIDTH >16 XintfRegs.XTIMING6.bit.XSIZE = 1; #else XintfRegs.XTIMING6.bit.XSIZE = 3; #endif // Bank switching // Assume Zone 6 is slow, so add additional BCYC cycles // when ever switching from Zone 6 to another Zone. // This will help avoid bus contention. XintfRegs.XBANK.bit.BANK = 6; XintfRegs.XBANK.bit.BCYC = 6; // double all Zone read/write lead/active/trail timing XintfRegs.XTIMING7.bit.X2TIMING = 1; // Zone will sample XREADY signal XintfRegs.XTIMING7.bit.USEREADY = 1; XintfRegs.XTIMING7.bit.READYMODE = 1; // sample asynchronous // Size must be either: // 0,1 = x32 or // 1,1 = x16 other values are reserved XintfRegs.XTIMING7.bit.XSIZE = 3; // Bank switching // Assume Zone 7 is slow, so add additional BCYC cycles // when ever switching from Zone 6 to another Zone. // This will help avoid bus contention. // XintfRegs.XBANK.bit.BANK = 7; // XintfRegs.XBANK.bit.BCYC = 7; //EDIS; //Force a pipeline flush to ensure that the write to //the last register configured occurs before returning. // EALLOW; // InitXintf16Gpio(); //EALLOW; GpioCtrlRegs.GPCMUX1.bit.GPIO64 = 3; // XD15 GpioCtrlRegs.GPCMUX1.bit.GPIO65 = 3; // XD14 GpioCtrlRegs.GPCMUX1.bit.GPIO66 = 3; // XD13 GpioCtrlRegs.GPCMUX1.bit.GPIO67 = 3; // XD12 GpioCtrlRegs.GPCMUX1.bit.GPIO68 = 3; // XD11 GpioCtrlRegs.GPCMUX1.bit.GPIO69 = 3; // XD10 GpioCtrlRegs.GPCMUX1.bit.GPIO70 = 3; // XD19 GpioCtrlRegs.GPCMUX1.bit.GPIO71 = 3; // XD8 GpioCtrlRegs.GPCMUX1.bit.GPIO72 = 3; // XD7 GpioCtrlRegs.GPCMUX1.bit.GPIO73 = 3; // XD6 GpioCtrlRegs.GPCMUX1.bit.GPIO74 = 3; // XD5 GpioCtrlRegs.GPCMUX1.bit.GPIO75 = 3; // XD4 GpioCtrlRegs.GPCMUX1.bit.GPIO76 = 3; // XD3 GpioCtrlRegs.GPCMUX1.bit.GPIO77 = 3; // XD2 GpioCtrlRegs.GPCMUX1.bit.GPIO78 = 3; // XD1 GpioCtrlRegs.GPCMUX1.bit.GPIO79 = 3; // XD0 GpioCtrlRegs.GPBMUX1.bit.GPIO40 = 3; // XA0/XWE1n GpioCtrlRegs.GPBMUX1.bit.GPIO41 = 3; // XA1 GpioCtrlRegs.GPBMUX1.bit.GPIO42 = 3; // XA2 GpioCtrlRegs.GPBMUX1.bit.GPIO43 = 3; // XA3 GpioCtrlRegs.GPBMUX1.bit.GPIO44 = 3; // XA4 GpioCtrlRegs.GPBMUX1.bit.GPIO45 = 3; // XA5 GpioCtrlRegs.GPBMUX1.bit.GPIO46 = 3; // XA6 GpioCtrlRegs.GPBMUX1.bit.GPIO47 = 3; // XA7 GpioCtrlRegs.GPCMUX2.bit.GPIO80 = 3; // XA8 GpioCtrlRegs.GPCMUX2.bit.GPIO81 = 3; // XA9 GpioCtrlRegs.GPCMUX2.bit.GPIO82 = 3; // XA10 GpioCtrlRegs.GPCMUX2.bit.GPIO83 = 3; // XA11 GpioCtrlRegs.GPCMUX2.bit.GPIO84 = 3; // XA12 GpioCtrlRegs.GPCMUX2.bit.GPIO85 = 3; // XA13 GpioCtrlRegs.GPCMUX2.bit.GPIO86 = 3; // XA14 GpioCtrlRegs.GPCMUX2.bit.GPIO87 = 3; // XA15 GpioCtrlRegs.GPBMUX1.bit.GPIO39 = 3; // XA16 GpioCtrlRegs.GPAMUX2.bit.GPIO31 = 3; // XA17 GpioCtrlRegs.GPAMUX2.bit.GPIO30 = 3; // XA18 GpioCtrlRegs.GPAMUX2.bit.GPIO29 = 3; // XA19 // GpioCtrlRegs.GPBMUX1.bit.GPIO34 = 3; // XREADY // GpioCtrlRegs.GPBMUX1.bit.GPIO35 = 3; // XRNW // GpioCtrlRegs.GPBMUX1.bit.GPIO38 = 3; // XWE0 GpioCtrlRegs.GPBMUX1.bit.GPIO34 = 0; // XREADY GpioCtrlRegs.GPBMUX1.bit.GPIO35 = 0; // XRNW GpioCtrlRegs.GPBMUX1.bit.GPIO38 = 3; // XWE0 GpioCtrlRegs.GPBMUX1.bit.GPIO36 = 3; // XZCS0 GpioCtrlRegs.GPBMUX1.bit.GPIO37 = 3; // XZCS7 GpioCtrlRegs.GPAMUX2.bit.GPIO28 = 3; // XZCS6 EDIS; asm(" RPT #7 || NOP"); } // end of InitXintf() 问题没有解决。
关于上电复位,请参考TI的标准的复位电路,有些电源芯片本身就包含复位信号输出,例如TPS767D318。 如果用阻容电路,要保证复位信号保持512个Cycle的低电平,再拉高。
按照陈先生的提示,问题基本解决。现在还剩下的问题是上电复位有时行有时不行。估计和复位电路有关。感谢陈先生,感谢各位给我的帮助。
|