本帖最后由 lyghj 于 2009-12-15 18:29 编辑
作者:lymex 转载自38度基准论坛
为尊重作者转载请注明出处
标准电阻的指标 How to Specify
1、老化 Aging
标准电阻最重要的指标,是老化,或者叫稳定性。
标准电阻既然做标准,其电阻值就应该很少随时间而变化。否则今天去校准了,明天改变了很大,还怎么能做标准?
由于老化都不大,因此一般以每年多少ppm(百万分之一)来表示。例如某10k电阻年老化-8ppm,就是每年减少80毫欧。
电阻的老化规律,一般是生产出来第一年老化最大,随后老变慢,而且逐渐趋于线性老化。
好的标准电阻,老化可以优于每年1ppm。更好的电阻甚至能到每年0.1ppm之内,而且比较有规律。这样,校准一次后,可以在随后的好多年内保持很高的准确性。
很多标准电阻,生产出来后,老化指标具有不确定性。例如国产的BZ3标准电阻,只能保证年老化<20ppm。一批标准电阻中,有的老化大、有的老化小。因此需要挑选、长期考核才能选出好电阻。我国国家实物标准里就有几只BZ3,但也有很多BZ3指标是不好的,所以也不要以貌取人。
还有很多标准电阻,比如Fluke 742A,指标4ppm/年,但有不少达不到,只能淘汰。
2、温度系数 Temperature Coefficient
温度系数就是电阻随温度变化的指标。
温度改变是必然的,而温度一变,电阻变动的比较大,就是测试不准了。因此,温度系数越小越好
常规情况,我们表示温度系数用每度ppm。比如某10k电阻温度系数是+8ppm/C,那么,当它在20度下测试值是R20=10,000.1欧,那么21度下就增加了8ppm=0.08欧,就成为10,000.18欧了。用公式表示就是:
R/R20 = 1 + α(t-20)
这就是个线性公式而已,其中α是1次项系数,单位ppm/C。t为温度,20度和R20为标准温度和此温度下的电阻值。
但是,常见的标准电阻都是用金属材料做的,金属材料的温度特性曲线都是二次的,也就是弯曲的,所以,完整的表达要加上二次项,成为:
R/R20 = 1 + α(t-20) + β(t-20)^2
这个β就是二次项系数,单位是ppm/C2,读做 每平方度ppm,或者ppm每度平方。
(以上的20度,是我国和原苏联等国家的标准。美国等国家采用23度)
那么这两个系数是如何影响电阻曲线的呢?让我们用实例说明。
α代表了斜率,但一般是某温度点的,不同温度下α不一样
比如在低温下α比较大,然后逐渐变小,在某个温度下具有α=0,即零温度系数点,次处的切线是平的。然后温度再增加,α为负
一般来将,零温度系数点最好在20度附近(油电阻),或者在23度附近(空气电阻)。这样,在标准温度附近变化,α很小,电阻变化也小
把β固定(β=-0.1)让α变化,不同α的曲线如下:
β代表了曲线弯曲程度。β越大曲线就越弯曲
对于对于某个具体电阻,β是确定的、不变的、唯一的。
即便对于某种电阻材料,β大体上是固定的。例如锰铜的β大体上是-0.6ppm/C2,比较大。而Evanohm的β大体上是-0.03ppm/C2,比较小。
理想的电阻 β=0。如果β大,那么不同温度下温度系数就变化大,只适合在某温度附近工作,在宽温度范围下温度系数就很大
把α固定(α=0.05)让β变化,不同β的曲线如下:
那么,现实中的电阻是什么样子呢?
红色曲线,20度下α=0.05很小因此很平,β=-0.03比较小因此曲线不太弯曲。这是典型的Evanohm标准电阻曲线(亦见后面标准电阻实例)
深红色曲线,α=2ppm/C因此有一定倾斜,β仍然比较小为-0.03ppm/C2,因此曲线不太弯曲。这是典型Evanohm电阻曲线
绿色曲线,α=4ppm/C稍大因此曲线倾斜,β也比较大为-0.5ppm/C2因此曲线比较弯曲。这个就是典型锰铜标准电阻曲线。RX70之类的线绕电阻都是锰铜的,其曲线一般不会好于此曲线
蓝色曲线类似,α=0因此曲线对称倾斜,β仍然为-0.5ppm/C2因此曲线仍然弯曲。这就是最好的锰铜电阻曲线。尽管α=0貌似理想,但这是有条件的。
也就是说,锰铜丝的线绕电阻曲线这种形状是固定的,是弯曲的。只能在某个温度点附近有近似零温度系数,温度偏离后温度系数就马上增大。所以,在宽的工作范围内要保持低的温度系数,只有采用好的电阻材料(比如Evanohm)
那么锰铜电阻用多个串并联能有改善吗?不能,曲线弯曲程度仍然一样。
锰铜电阻β=-0.6ppm/C2,假设20度下某电阻温度系数是0ppm,那么21度就的温度系数是-0.6ppm/C,22度为-1.2ppm/C。也就是说,温度每变化1度,温度系数变化-0.6ppm/C。
还有人会问,Vishay VHP202Z 是什么样子的曲线?
指标上温度系数<0.05,材料是Evanohm,因此曲线就是红色的,或者说比红色的还要好。 |