[技术问答] M451的SPI0

[复制链接]
2749|10
 楼主| yqdeso 发表于 2016-6-23 19:04 | 显示全部楼层 |阅读模式
spi, os, ISO, MOS, sd
本帖最后由 yqdeso 于 2016-6-23 19:06 编辑

以下描述均为主模式,并不讨论从CS选择。

根据datasheet的描述,SPI0有4口线模式,比常见的SPI各多了一个SDO  SDI。即M451的datasheet中所描述中的MOSI1,MISO1。

那么问题来了:
1,如果拿SPI0当常用SPI(SCK  SDI   SDO)来使用时,是否可以把MOSI1,MISO1空出做普通IO使用?
2,如果SPI0连接W25Q32这颗FLASH时,MOSI0  MOSI1  MISO0  MISO1这4个口线与W25Q32的IO0~IO3如何连接?(普通连接方式不讨论,我也使用过)
3,根据问题2,如果使用MOSI0  MOSI1  MISO0  MISO1这4个口线时,MICRO_SD卡如何连接。(普通连接方式不讨论,我也使用过)?
望高手解答。
 楼主| yqdeso 发表于 2016-6-24 10:09 | 显示全部楼层
没人会么????
598330983 发表于 2016-6-24 18:57 来自手机 | 显示全部楼层
一般都是要成对使用,不过在配置上是可以独立配置,楼主试试看
戈卫东 发表于 2016-6-24 20:14 | 显示全部楼层
1 应该可以
2 MOSI0=IO0 MISO0=IO1 MOSI1=IO2 MISO1=IO3
戈卫东 发表于 2016-6-24 20:16 | 显示全部楼层
2 其实新唐的QSPI比较简单,只要4条线都连了就可以用
quray1985 发表于 2016-6-25 21:54 | 显示全部楼层
貌似只要这个使能成了spi,就不能再作为普通IO用了
稳稳の幸福 发表于 2016-6-27 15:24 | 显示全部楼层
每个接口都是可以独立设置的。
huangcunxiake 发表于 2016-6-28 22:54 | 显示全部楼层
STF卡
D卡:1-data3,2-cmd,3-vss,4-vdd,5-clk,6-vss,7-data0,8-data1,9-data2.

TF卡(SD模式):1-data2,2-data3,3-cmd,4-vdd,5-clk,6-vss,7-data0,8-data1
TF卡(SPI模式):1-rsv,2-cs,3-di,4-vdd,5-sclk,6-vss,7-do,8-rsv

 楼主| yqdeso 发表于 2016-6-29 09:18 | 显示全部楼层
戈卫东 发表于 2016-6-24 20:14
1 应该可以
2 MOSI0=IO0 MISO0=IO1 MOSI1=IO2 MISO1=IO3

好的,多谢!我试下先!
wahahaheihei 发表于 2016-6-29 17:58 | 显示全部楼层
找个例程,看看是对应的哪几个端口,然后每个端口怎么配置的就清楚了。
zhuomuniao110 发表于 2016-6-29 20:44 | 显示全部楼层
给你个SPI0的参考
  1. /**************************************************************************//**
  2. * [url=home.php?mod=space&uid=288409]@file[/url]     main.c
  3. * [url=home.php?mod=space&uid=895143]@version[/url]  V1.0
  4. * $Revision: 7 $
  5. * $Date: 15/09/02 10:04a $
  6. * @brief
  7. *           Configure SPI0 as Master mode and demonstrate how to communicate with an off-chip SPI Slave device.
  8. *          Needs to work with SPI_SlaveMode sample code.
  9. * @note
  10. * Copyright (C) 2014~2015 Nuvoton Technology Corp. All rights reserved.
  11. *
  12. ******************************************************************************/
  13. #include <stdio.h>
  14. #include "M451Series.h"


  15. #define TEST_COUNT 16

  16. uint32_t g_au32SourceData[TEST_COUNT];
  17. uint32_t g_au32DestinationData[TEST_COUNT];
  18. volatile uint32_t g_u32TxDataCount;
  19. volatile uint32_t g_u32RxDataCount;

  20. /* Function prototype declaration */
  21. void SYS_Init(void);
  22. void SPI_Init(void);

  23. /* ------------- */
  24. /* Main function */
  25. /* ------------- */
  26. int main(void)
  27. {
  28.     uint32_t u32DataCount;

  29.     /* Unlock protected registers */
  30.     SYS_UnlockReg();
  31.     /* Init System, IP clock and multi-function I/O. */
  32.     SYS_Init();
  33.     /* Lock protected registers */
  34.     SYS_LockReg();

  35.     /* Configure UART0: 115200, 8-bit word, no parity bit, 1 stop bit. */
  36.     UART_Open(UART0, 115200);

  37.     /* Init SPI */
  38.     SPI_Init();

  39.     printf("\n\n");
  40.     printf("+--------------------------------------------------------+\n");
  41.     printf("|             SPI Master Mode Sample Code                |\n");
  42.     printf("+--------------------------------------------------------+\n");
  43.     printf("\n");
  44.     printf("Configure SPI0 as a master.\n");
  45.     printf("Bit length of a transaction: 32\n");
  46.     printf("The I/O connection for SPI0:\n");
  47.     printf("    SPI0_SS (PB.4)\n    SPI0_CLK (PB.2)\n");
  48.     printf("    SPI0_MISO0 (PB.3)\n    SPI0_MOSI0 (PB.5)\n\n");
  49.     printf("SPI controller will transfer %d data to a off-chip slave device.\n", TEST_COUNT);
  50.     printf("In the meanwhile the SPI controller will receive %d data from the off-chip slave device.\n", TEST_COUNT);
  51.     printf("After the transfer is done, the %d received data will be printed out.\n", TEST_COUNT);
  52.     printf("The SPI master configuration is ready.\n");

  53.     for(u32DataCount = 0; u32DataCount < TEST_COUNT; u32DataCount++)
  54.     {
  55.         /* Write the initial value to source buffer */
  56.         g_au32SourceData[u32DataCount] = 0x00550000 + u32DataCount;
  57.         /* Clear destination buffer */
  58.         g_au32DestinationData[u32DataCount] = 0;
  59.     }

  60.     printf("Before starting the data transfer, make sure the slave device is ready. Press any key to start the transfer.");
  61.     getchar();
  62.     printf("\n");

  63.     /* Set TX FIFO threshold, enable TX FIFO threshold interrupt and RX FIFO time-out interrupt */
  64.     SPI_SetFIFO(SPI0, 4, 4);
  65.     SPI_EnableInt(SPI0, SPI_FIFO_TXTH_INT_MASK | SPI_FIFO_RXTO_INT_MASK);
  66.     g_u32TxDataCount = 0;
  67.     g_u32RxDataCount = 0;
  68.     NVIC_EnableIRQ(SPI0_IRQn);

  69.     /* Wait for transfer done */
  70.     while(g_u32RxDataCount < TEST_COUNT);

  71.     /* Print the received data */
  72.     printf("Received data:\n");
  73.     for(u32DataCount = 0; u32DataCount < TEST_COUNT; u32DataCount++)
  74.     {
  75.         printf("%d:\t0x%X\n", u32DataCount, g_au32DestinationData[u32DataCount]);
  76.     }
  77.     /* Disable TX FIFO threshold interrupt and RX FIFO time-out interrupt */
  78.     SPI_DisableInt(SPI0, SPI_FIFO_TXTH_INT_MASK | SPI_FIFO_RXTO_INT_MASK);
  79.     NVIC_DisableIRQ(SPI0_IRQn);
  80.     printf("The data transfer was done.\n");

  81.     printf("\n\nExit SPI driver sample code.\n");

  82.     /* Reset SPI0 */
  83.     SPI_Close(SPI0);
  84.     while(1);
  85. }

  86. void SYS_Init(void)
  87. {
  88.     /*---------------------------------------------------------------------------------------------------------*/
  89.     /* Init System Clock                                                                                       */
  90.     /*---------------------------------------------------------------------------------------------------------*/

  91.     /* Enable external 12MHz XTAL */
  92.     CLK_EnableXtalRC(CLK_PWRCTL_HXTEN_Msk);

  93.     /* Waiting for clock ready */
  94.     CLK_WaitClockReady(CLK_STATUS_HXTSTB_Msk);

  95.     /* Switch HCLK clock source to HXT and HCLK source divide 1 */
  96.     CLK_SetHCLK(CLK_CLKSEL0_HCLKSEL_HXT, CLK_CLKDIV0_HCLK(1));

  97.     /* Select HXT as the clock source of UART0 */
  98.     CLK_SetModuleClock(UART0_MODULE, CLK_CLKSEL1_UARTSEL_HXT, CLK_CLKDIV0_UART(1));

  99.     /* Select PCLK0 as the clock source of SPI0 */
  100.     CLK_SetModuleClock(SPI0_MODULE, CLK_CLKSEL2_SPI0SEL_PCLK0, MODULE_NoMsk);

  101.     /* Enable UART peripheral clock */
  102.     CLK_EnableModuleClock(UART0_MODULE);
  103.     /* Enable SPI0 peripheral clock */
  104.     CLK_EnableModuleClock(SPI0_MODULE);

  105.     /* Update System Core Clock */
  106.     /* User can use SystemCoreClockUpdate() to calculate PllClock, SystemCoreClock and CyclesPerUs automatically. */
  107.     SystemCoreClockUpdate();

  108.     /*---------------------------------------------------------------------------------------------------------*/
  109.     /* Init I/O Multi-function                                                                                 */
  110.     /*---------------------------------------------------------------------------------------------------------*/
  111.     /* Set PD multi-function pins for UART0 RXD and TXD */
  112.     SYS->GPD_MFPL &= ~(SYS_GPD_MFPL_PD0MFP_Msk | SYS_GPD_MFPL_PD1MFP_Msk);
  113.     SYS->GPD_MFPL |= (SYS_GPD_MFPL_PD0MFP_UART0_RXD | SYS_GPD_MFPL_PD1MFP_UART0_TXD);

  114.     /* Set SPI0 multi-function pins */
  115.     SYS->GPB_MFPL &= ~(SYS_GPB_MFPL_PB2MFP_Msk | SYS_GPB_MFPL_PB3MFP_Msk | SYS_GPB_MFPL_PB4MFP_Msk | SYS_GPB_MFPL_PB5MFP_Msk);
  116.     SYS->GPB_MFPL |= (SYS_GPB_MFPL_PB2MFP_SPI0_CLK | SYS_GPB_MFPL_PB3MFP_SPI0_MISO0 | SYS_GPB_MFPL_PB4MFP_SPI0_SS | SYS_GPB_MFPL_PB5MFP_SPI0_MOSI0);
  117. }

  118. void SPI_Init(void)
  119. {
  120.     /*---------------------------------------------------------------------------------------------------------*/
  121.     /* Init SPI                                                                                                */
  122.     /*---------------------------------------------------------------------------------------------------------*/
  123.     /* Configure SPI0 as a master, SPI clock rate 2 MHz,
  124.        clock idle low, 32-bit transaction, drive output on falling clock edge and latch input on rising edge. */
  125.     SPI_Open(SPI0, SPI_MASTER, SPI_MODE_0, 32, 2000000);
  126.     /* Enable the automatic hardware slave selection function. Select the SPI0_SS pin and configure as low-active. */
  127.     SPI_EnableAutoSS(SPI0, SPI_SS, SPI_SS_ACTIVE_LOW);
  128. }

  129. void SPI0_IRQHandler(void)
  130. {
  131.     /* Check RX EMPTY flag */
  132.     while(SPI_GET_RX_FIFO_EMPTY_FLAG(SPI0) == 0)
  133.     {
  134.         /* Read RX FIFO */
  135.         g_au32DestinationData[g_u32RxDataCount++] = SPI_READ_RX(SPI0);
  136.     }
  137.     /* Check TX FULL flag and TX data count */
  138.     while((SPI_GET_TX_FIFO_FULL_FLAG(SPI0) == 0) && (g_u32TxDataCount < TEST_COUNT))
  139.     {
  140.         /* Write to TX FIFO */
  141.         SPI_WRITE_TX(SPI0, g_au32SourceData[g_u32TxDataCount++]);
  142.     }
  143.     if(g_u32TxDataCount >= TEST_COUNT)
  144.         SPI_DisableInt(SPI0, SPI_FIFO_TXTH_INT_MASK); /* Disable TX FIFO threshold interrupt */

  145.     /* Check the RX FIFO time-out interrupt flag */
  146.     if(SPI_GetIntFlag(SPI0, SPI_FIFO_RXTO_INT_MASK))
  147.     {
  148.         /* If RX FIFO is not empty, read RX FIFO. */
  149.         while(SPI_GET_RX_FIFO_EMPTY_FLAG(SPI0) == 0)
  150.             g_au32DestinationData[g_u32RxDataCount++] = SPI_READ_RX(SPI0);
  151.     }
  152. }


  153. /*** (C) COPYRIGHT 2014~2015 Nuvoton Technology Corp. ***/


您需要登录后才可以回帖 登录 | 注册

本版积分规则

11

主题

125

帖子

3

粉丝
快速回复 在线客服 返回列表 返回顶部