打印
[经验知识]

【功率器件心得分享】氮化镓 (GaN) 在射频功率领域

[复制链接]
1109|0
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
Ketose|  楼主 | 2016-9-29 17:18 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 Ketose 于 2016-9-29 17:50 编辑

     氮化镓(GaN)这种宽带隙材料将引领射频功率器件新发展并将砷化镓(GaAs)和LDMOS(横向扩散金属氧化物半导体)器件变成昨日黄花?看到一些媒体 **、研究论文、分析报告和企业宣传文档后你当然会这样认为,毕竟,GaN比一般材料有高10倍的功率密度,而且有更高的工作电压(减少了阻抗变换损 耗),更高的效率并且能够在高频高带宽下大功率射频输出,这就是GaN,无论是在硅基、碳化硅衬底甚至是金刚石衬底的每个应用都表现出色!帅呆了!

至少现在看是这样,让我们回顾下不同衬底风格的GaN:硅基、碳化硅(SiC)衬底或者金刚石衬底。

硅基氮化嫁:这种方法比另外两种良率都低,不过它的优势是可以使用全球低成本、大尺寸CMOS硅晶圆和大量射频硅代工厂。因此,它很快就会以价格为竞争优势对抗现有硅和砷化镓技术,理所当然会威胁它们根深蒂固的市场。

碳化硅衬底氮化镓:这是射频氮化镓的“高端”版本,SiC衬底氮化镓可以提供最高功率级别的氮化镓产品,可提供其他出色特性,可确保其在最苛刻的环境下使用。

金刚石衬底氮化镓:将这两种东西结合在一起是很难的,但是好处也是巨大的:在世界上所有材料中工业金刚石的热导率最高(因此最好能够用来散热)。使用金刚石代替硅、碳化硅、或者其他基底材料可以把金刚石高导热率优势发挥出来,可以实现非常接近芯片的有效导热面。

金 刚石衬底GaN主要是应用于美国国防部高级研究计划署(DARPA)的近结热传输项目(NJTT),始于2011年,在这个项目中TriQuint和布里 斯托大学第四研究室是合作伙伴,而且洛克希德·马丁公司也是参与者。该团队在2013年宣布他们已经实现了连续三次提高了GaN-on-SiC的功率密 度。这意味着可以把金刚石衬底氮化镓芯片缩小三倍或把其射频功率提升3倍,该项目完成了设计测试评估,很可能金刚石衬底GaN将在5年内满足其制造性要求。


        LDMOS自上个世纪90年代成功商用以来,工 艺制造技术日趋成熟、稳定。另外在产品性能上,LDMOS功率管在现有的3G, 4G无线通讯的应用频段(例如2GHz左右或以下的频段),相对于GaN来说没有明显的劣势,而在成本上相对GaAs和GaN来说还有一定的优势,综合来 说LDMOS功率管性价比较高。从另外一方面来说,由于器件工艺的成熟和系统应用层面的不断进步,LDMOS的商用成熟度也是最高的。同时因为现在的各个 LDMOS厂家包括Freescale在内还在积极研发新一代高性能产品(包括有源Die和高效率的内匹配技术和集成等等),LDMOS器件性能也会持续 不断提高。

  而GaN晶体管首次出现在20世纪90年代,最近几年才开始商业化应用。GaN的普及在于其高电流和高电压性,这 使得它在微波应用和功率切换上极具价值。GaN技术在性能上优于其他射频技术,这是因为在给定频率下,GaN可以同时提供最高的功率、增益和效率组合,还 因为GaN可以在较高的工作电压下工作,并且降低系统电流。


  目前,新一代GaN元件正从以下4个方面突破技术障碍:1)具备更低导通电阻:由于全新GaN FET系列可降低一半导通电阻,因此可支援大电流、高功率密度应用。2)进一步改善品质因子(FOM):最新一代GaN FET较上代元件降低一半的硬开关FOM,因此在高频功率转换应用可进一步提高开关性能。3)更宽广的电压范围:由于受惠于采用GaN FET扩展至30V的应用,因此可支援更高功率的DC-DC转换器、POL转换器以及隔离型电源供电、电脑与伺服器内的同步整流器等更多应用。5)更优越的散热性能:新一代GaN FET系列产品在温度方面具备增强性能并配备更优越的晶片布局,因而改善了散热及电学性能,使得GaN FET在任何条件下都能更高功率地工作。


      预计2020年5G开始大规模商用部署,到时候5G不但兼容4G网络,还会使用非授权或毫米波波段。毫米波指频率为30GHz到300GHz的电磁波。
     4G手机里面的射频器件主要是砷化镓和SOI,5G时代,砷化镓和SOI器件还会需要,同时也会采用氮化镓器件,尤其是在高频段。
      只有时间才能检验射频氮化镓工艺能否适合手机应用,不过射频氮化镓工艺已经在改变整个格局

相关帖子

发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

个人签名:我最讨厌两种人:一是有种族歧视的; 二是黑人;三是不识数的!

64

主题

3225

帖子

15

粉丝