打印

轨至轨 的“轨”

[复制链接]
4118|17
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
457878|  楼主 | 2010-4-6 17:13 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 457878 于 2010-4-6 18:29 编辑

是不是所有【轨至轨】输出都不能到0?

请看【轨至轨运放LM7301】和【轨至轨DA转换器LTC5615】图片:



LM7301就不用说了,肯定只能输出到0.16V
还有TLC5615,前面Vo说是0   -  VDD-0.4 ,后面又来个Vol 参数(就只能输出0.25V了),有点自相矛盾不是?

如果这两款“轨至轨”都不能输出到0V,到底有没有能到0V的“轨至轨”?

相关帖子

沙发
457878|  楼主 | 2010-4-6 17:16 | 只看该作者
本帖最后由 457878 于 2010-4-7 10:17 编辑

还有个问题,估计也和轨至轨有关:
仿真了一下,发现这个电路不能正常工作,输入2.5V时IC1不能输出24-2.5V=21.5V? 而是23.8V 郁闷中....


constma2.png (7.59 KB )

constma2.png

constma2.png (7.59 KB )

constma2.png

aaa.png (7.59 KB )

aaa.png

使用特权

评论回复
板凳
457878|  楼主 | 2010-4-6 18:35 | 只看该作者
能不用当然不用啦,呵呵

使用特权

评论回复
地板
mohanwei| | 2010-4-6 18:46 | 只看该作者
速度不高的话,推荐SGM358,轨到轨输入输出

使用特权

评论回复
5
457878|  楼主 | 2010-4-6 18:51 | 只看该作者
本帖最后由 457878 于 2010-4-6 20:24 编辑

普通运放(像LM358)都可以输出5mV的低电平,轨至轨却输出0.16,0.25V?那不是反而成了超级【非轨至轨】,简直不可能嘛,所以非常怀疑!
再分析下:
VOL = 0.25 V是在IOUT ≤ 5mA 也就是说吸入了5mA左右的电流。如果不吸入电流呢?会不会是0 ?

知道的朋友举下手!

使用特权

评论回复
6
457878|  楼主 | 2010-4-6 20:06 | 只看该作者
本帖最后由 457878 于 2010-4-6 20:18 编辑

mohanwei的SGM358肯定好用,记下了,不过这里电压太高,暂且搁下。

目的是想做个0~25mA恒流源,附上电路:


现在主要是需要TLC5615输出一个0~2.5V,LM7301能输出24~21.5V,就能保证功能了。

TI的技术支持不好找啊,知道的朋友举下手!

使用特权

评论回复
7
草履虫| | 2010-4-6 23:03 | 只看该作者
好像LZ的一级就实现了,为什么还要第二极呀?

使用特权

评论回复
8
iC921| | 2010-4-7 01:59 | 只看该作者
这两款“轨至轨”都不能输出到0V,到底有没有能到0V的“轨至轨”?


任何一款都不能达到0V或VCC,而且,越接近“轨”,输出电流能力就越低。“轨至轨”是有条件的。有的甚至只能至一单轨----或者VCC,或者GND(0V)。有的只有输入轨至轨,有的则只能输出轨至轨。

有一个情况我以前没注意:是不是简单一些的轨至轨会在性能上更优秀一些?如单单是0V轨-轨时是不是能更接近0V?

使用特权

评论回复
9
457878|  楼主 | 2010-4-7 10:21 | 只看该作者
只有一个想法:所谓的轨至轨实际上是 超级【非轨至轨】,连普通运放都不如...

使用特权

评论回复
10
457878|  楼主 | 2010-4-7 10:28 | 只看该作者
此方案告吹,另想办法,谢谢: IC921, 草履虫, mohanwei, netjob!

使用特权

评论回复
11
iC921| | 2010-4-8 04:09 | 只看该作者
有个东西还是值得看一下

APPLICATION NOTE 741
Rail-to-Rail Outputs and Beyond-the-Rails Inputs: The Inside Story on Micropower Op Amps
Abstract: When does the input voltage range of a low power/low voltage op amp become important? What operational amplifier should you choose when designing a battery powered handheld system?

To optimize performance in today's low-power handheld systems, designers must pay increasing attention to the common-mode input voltage range, output voltage swing, noise, and supply current of single-supply micropower op amps. Differential op amps usually include the negative rail in their input common-mode range, but that may not be sufficient for applications with extended VCM requirements. For those, Maxim offers its first Beyond-the-Rails op-amp family, whose common-mode input voltage extends not only beyond the negative supply rail but beyond the positive rail as well.

Beyond-the-Rails InputsDevices with Beyond-the-Rails inputs are designed especially for low-power single-supply operation. The input stage consists of separate npn and pnp differential-transistor pairs (Figure 1). Together, they provide a common-mode input voltage range that extends beyond both supply rails. The npn pair typically connects to the top rail (VCC), and the pnp connects to the bottom rail (VEE).


Figure 1. Maxim's Beyond-the-Rails input structure includes overvoltage protection.

To protect sensitive transistor pairs in the input stage, op amps of the MAX4240 family include a 2.2kΩ current-limiting resistor in each input path and separate networks of three back-to-back diodes each for the IN+ and IN- terminals (Figure 2). The forward-voltage drop for these conventional diodes (approximately 0.7V each) results in an overall drop of 2.1V, and the voltage seen by each input (1.45V) is well below the diodes' breakdown level. The resistors limit current in the diode networks to 0.65mA, which is well below the level that could damage the diodes.


Figure 2. Input protection circuit.

To understand the term "Beyond-the-Rails," you must become familiar with the basic operation of the input structure. For best performance, that is, the highest possible gain (β), transconductance (Gm), and output impedance (ZOUT) the bipolar-transistor pairs used for amplification should operate in their active regions (Figure 3). Collector-emitter saturation voltage (VCEsat), the key parameter relating the active and saturated regions, is typically 0.2V or less for transistors in the MAX4240 family of ICs. VCEsat varies slightly with transistor size, collector current, and temperature.


Figure 3. Bipolar signal transistors in the input stage must operate in the active region.

Each input structure contains two npn (or pnp) transistors, two load resistors, and a bias-current source for generating a fixed tail current (ITAIL). For fully balanced transistor pairs that are also ideal, exactly half the tail current flows through each collector path, maintaining a fixed value of voltage across RL-upper (or RL-lower). This value is a function of ITAIL and the cascode current (IFOLDING CASCODE) of the second-stage folding-cascode circuit.

The current through load resistors RL-upper and RL-lower determines the common-mode input voltage:

I = ITAIL/2 + I FOLDING CASCODE

After choosing a low voltage across the load (0.3V in this case), you set the low end of RL-upper to VCC - 0.3V and the upper end of RL-lower to VEE + 0.3V.

Operating the transistor pairs in their active region ensures optimum performance by producing a larger headroom (> VCEsat) between the emitter and the collector. Once the headroom is down to VCE = 0.2V, however, the transistors begin to saturate, which establishes a limit for the common-mode input range and the acceptable transistor performance (β↓ , Gm↓ , ZOUT↓ ). Overshooting the common-mode input range by more than 200mV degrades performance by causing a significant drop in CMRR, but doesn't harm the amplifier. With detailed knowledge of the internal input structure, you can express the upper and lower limits for VCM as follows:

VCM-upper = VCC - (I * RL-upper + VCEsat(npn)) + VEB(npn)
VCM-upper = VCC - (0.3V + 0.2V) + 0.7V
VCM-upper = VCC + 0.2V
VCM-lower = VEE + (I * RL-lower + VCEsat(pnp)) + VBE(pnp)
VCM-lower = VEE + (0.3V + 0.2V) - 0.7V
VCM-lower = VEE - 0.2V

When operating on a single +5V supply, the common-mode voltage covers an input range of -0.2V to +5.2V without violating the transistor pairs' saturation condition.

Beyond-the-Rails inputs exhibit a significant change in input bias current as the input signal moves from one supply rail to the other, causing the signal path to shift from one bipolar-transistor pair to the other. This shift between npn and pnp pairs can cause the input bias currents IBIAS+ and IBIAS- to change polarity and magnitude, producing variations in offset voltage unless the input source impedances seen by IN+ and IN- are equal.

Input resistance is typically 45MΩ for differential input voltages well below 1.8V. Differential inputs greater than 1.8V cause the differential clamp diodes to conduct, producing an input resistance around 4.4kΩ. The amplifier's input bias current can be approximated by the following equation:
IBIAS = (VDIFF - 1.8V)/4.4kΩ
As the differential input voltage approaches 1.8V, conduction in the diodes causes the input resistance to decrease exponentially from 45MW to 4.4kW. Bias current increases with the same exponential curve. To avoid distortion caused by changes in the offset voltage and input bias currents, you can lower the offset error by matching the effective impedances seen at the amplifier's IN+ and IN- inputs.

All MAX4240-MAX4244 amplifier inputs feature diode protection against electrostatic discharge (ESD). The "positive" ESD diode (located between IN+ and VCC) begins conducting when the input voltage exceeds VCC + 0.6V. Similarly, the negative path between IN- and VEE becomes active when IN- overdrives VEE by -0.6V.

Another valuable feature is the inputs' overvoltage protection, which is essential when the operational amplifier is used as a comparator. Without the protective input structure, comparator action drives the positive input high (IN+ to 5V) and the negative input IN- to ground, applying a differential voltage of +5V between the internal pnp and npn pairs. Five volts exceeds the bipolar transistors' maximum allowable reverse emitter-base breakdown voltage (2V). Even if the condition changes instantly, an npn transistor in the IN- path (without protection) would be damaged irreversibly.

Rail-to-Rail Output StageSome low-voltage designs don't require Rail-to-Rail or Beyond-the-Rails inputs, but most need Rail-to-Rail output stages to maximize their dynamic performance. The structure of single-supply Rail-to-Rail output stages differs considerably from those in dual-supply operational amplifiers.

Standard output stages typically have an emitter follower structure (Figure 4a), but Rail-to-Rail output stages (Figure 4b) usually incorporate a common-emitter configuration. The voltage drop in a common-emitter configuration is relatively low and depends only on the emitter-collector saturation voltage VCEsat. Classic emitter-follower output stages, on the other hand, allow the output no closer to the positive rail than VCC - VCesat - VBE. VCEsat is determined by the internal current source, and VBE is produced by the output transistor.


Figure 4. Output stages: the standard emitter-follower configuration (a) and Maxim's Rail-to-Rail configuration with common emitters (b).

The bipolar transistors' emitter-collector saturation voltage in these Rail-to-Rail outputs depends on current through the transistors, so the output swing is dependent on the amplifier's output load. Output stages in the MAX4240 family, for instance, swing to within 40mV of the rails (typically) while driving loads as high as 10kΩ. Even with a 100kΩ load, the MAX4240 (configured as a voltage follower operating on a 2V single supply) offers typical output swings between VEE + 6mV and VCC - 8mV.

使用特权

评论回复
12
iC921| | 2010-4-8 04:10 | 只看该作者
这个应该是“越轨”输入

使用特权

评论回复
13
457878|  楼主 | 2010-4-8 17:19 | 只看该作者
本帖最后由 457878 于 2010-4-8 17:28 编辑

看的头晕....TI,国办也是,一律号称【beyon the rails】, 只是没找到其内部实现图。

假设其输出结构与IC921发的输出结构图一致,我认为还是能输出到 0 V 的,那个Vol应该是在吸收了外部5mA电流的情况下测得的电压。

使用特权

评论回复
14
bbyeah| | 2010-4-8 17:36 | 只看该作者


一个典型CMOS轨对轨输入输出运放的电路图
这种基于folded-cascode结构的轨对轨放大器都是可以越过电源轨一点的,越过的范围是Vth-Veff,也就是0.2~0.3
对于12楼那个电路,使用电阻做负载的话还可以更多
不过一般不会建议这样使用,极限情况性能下降太多

输出的轨对轨和负载有关系,在大电流输出条件下还需要到电源轨需要无限大的输出管

使用特权

评论回复
15
457878|  楼主 | 2010-4-8 18:58 | 只看该作者
应该是经典资料,赞一个!

使用特权

评论回复
16
iC921| | 2010-5-14 21:20 | 只看该作者
是挺经典的!

使用特权

评论回复
17
kubuco| | 2010-5-14 22:42 | 只看该作者
顶个先。。

使用特权

评论回复
18
457878|  楼主 | 2012-6-2 23:07 | 只看该作者
纪念IC921:顶贴!

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

268

主题

876

帖子

3

粉丝