打印

异步 DSP 核心设计:更低功耗,更高性能

[复制链接]
698|2
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
fjsdr563jfh|  楼主 | 2016-12-28 23:03 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
目前处理器性能的主要衡量指标是时钟频率。绝大多数的集成电路 (IC) 设计都基于同步架构,而同步架构都采用全球一致的时钟。这种架构非常普及,许多人认为它也是数字电路设计的唯一途径。然而,有一种截然不同的设计技术即将走上前台:异步设计。
这一新技术的主要推动力来自硅技术的发展状况。随着硅产品的结构缩小到 90 纳米以内,降低就已成为首要事务。异步设计具有低、电路更可靠等优点,被看作是满足这一需要的途径。
异步技术由于诸多原因曾经备受冷落其中最重要的是缺乏标准化的工具流。IC 设计团队面临着巨大的压力,包括快速地交付设备,使用高级编程语言和标准的事件驱动架构 (EDA) 工具,帮助实施合成、定时和验证等任务。如果异步设计可以使用此类工具,那么可以预计将会出现更多采用异步逻辑组件的设备。
在过去小型异步电路仅用作同步电路的补充。仅仅在最近,新发布的商用设备才主要基于异步设计。但是此类设备主要针对小众市场,如要求超低和稳定电流的嵌入式感应器。
我们正在见证一款完全基于异步逻辑的通用数字信号处理器 (DSP) 核心横空出世。无论是 IC 设计人员还是最终用户,它带来的好处数不胜数。
同步与异步
目前的数字设计事实上采用的是同步设计技术。由于历史原因,这种方法得到了改良,设计工具也不断演化。目前有一种标准流以高级语言为基础,可实现快速开发。同步设计还可以轻松地扩展设备性能。设计人员只须提高时钟频率,就能使设计变得更快。
同步法包括建立功能模块每个模块由一个按时钟信号控制的有限状态机 (FSM) 驱动。触发器被用于存储当前状态。当接收到时钟信号时,触发器将更新所存储的值。
DSP 的设计过程中逻辑阶段必不可少。这些阶段实施操作并将结果传递到下一阶段。下异步逻辑用于在两个触发器之间计算电路的新状态。例如,该逻辑云可执行加法或乘法。
对于异步 DSP 核心逻辑阶段被调整以消除时钟。下图显示了这种 DSP 架构的基本构造。不是由时钟控制门闩线路,而实际上是传递了一个完成信号给下一逻辑阶段。根据逻辑云所执行的操作,在恰当时候可生成完成信号。
这种本地延迟控制可以保证电路的稳定。由于控制电路时间的逻辑就在本地,它就可以相应地改变电压、处理速度和温度。
异步设计有许多种不同的途径而前提是电路不受单一时钟控制。多数情况下,异步逻辑被用于通过专门的电路设计来解决具体问题。但是,异步逻辑也可用作完整 DSP 核心的基础,而不仅仅是设计中偶尔需要的一种工具。其好处包括降低、可靠性提高以及电磁干扰 (EMI) 低。
异步设计的好处
采用异步设计的理由非常吸引人。在正确使用中这种方法可以实现更低的能耗、更好的 EMI 性能由于消除了全球时钟偏差真正地简化了设计。
更低与同步 DSP 核心相比异步 DSP 最重要的好处就是更低。事实上,这种异步核心的能效数量级高于最好的同步 DSP
随着硅产品尺寸的缩小问题越来越重要。由于线路长度为线性而面积为平方,单位面积硅将随着尺寸的缩减而增加。目前,通过降低电压,数字设计人员已经成功地解决了这个问题;但由于电压阈值的限制,目前的半导体技术无法再有效地降低电压。要想有效地利用新增加的功能,必须降低各个功能的
CMOS 技术中门电路切换状态时将消耗能量。在同步电路中,时钟需要进行多次切换,从而造成。在设备或者设备的分区中分配时钟需要时钟缓冲器。时钟缓冲器必须足够大,以确保最大限度降低时钟偏差。换言之,电路中的所有点必须同时接受时钟变换。时钟分配通常被称为时钟树(Clock Tree),一般会消耗几乎一半的总系统能量。树底部的时钟缓冲器具有相当大的扇出量和很大的体积,因此较高。
目前开发有多种技术消除切换逻辑的能耗如时钟门控。迄今为止,这些技术都无法实现异步设计的更低
时钟门控对于异步电路来说并非必备。实际上异步电路仅在执行有效操作时耗能。换言之,无需增加电路的情况下,异步电路的将根据所提供的性能相应地增加。这意味着,不需要更多调整,这种设备就拥有低待机电流,其也将随实际提供的性能而增加。
切换性能更出色除了更低外含有异步逻辑的设备还将拥有极低的 EMI。无论是 IC 设计人员还是最终用户,它带来的好处数不胜数。
全球或当地时钟是影响 EMI 的一个最大因素。由于同步电路中的全球时钟需要同时随处进行切换,因此同步设备所发出的 EMI 在特定频率时将拥有相当明显的峰值。
高速设备所发出的 EMI 噪音将进入 PCB 的电源层。随后该噪音将出现在外部 I/O 或布线中,在线缆中引起多余且通常超标的辐射。第一道防线采用解耦电容,而更昂贵的屏蔽或共模扼流线圈将用作最后一道防线。
电源层上的 EMI 也使得电源的设计更加复杂。对于高速运转的同步电路,电源必须经过过滤或过量储备,以符合电源层上所产生的电压尖脉冲。
这些噪音和电源问题加在一起,增加了设计人员的设计难度尤其在特定设计中使用大量高速 DSP 时。通过消除对于全球同步时钟的需要,异步逻辑设计可以减轻或解决这些问题。可以显著地降低 EMI,使 PCB 设计更简单并提高系统的可靠性。异步电路电源波纹的缺失相当引人注目,它表明可以获得更好的切换性能。
IC 设计人员眼中更出色的切换性能代表更可靠的电路。电路同时发生大规模切换时,将产生非常大的瞬时电流。在设备的电网上显示为 IR 降。这意味着电网的某一区域在此时的电压较低。这是意料之中的正常情况,通常都通过设计验证来确保电网能承受预计的最大电压下降。有时这也是一种限制因素,妨碍设计人员在逻辑的特定区域进行进一步设计。
消除时钟偏差采用异步设计还有很多原因。低于 90 纳米的硅片是生产的趋势。这可以从硅制造商大力投入以纠正一系列问题上得以证明。他们已着手开发干涉计量学(Interferometric Metrology)等高级技术,尽量使光罩的最小特征尺寸小于当前的曝光波长。
由于这些变量会提高设备的偏差量,因此在过程中控制它们非常重要。
时钟偏差被定义为时钟信号到达电路中不同点的时间差。
由于相同时钟上的所有逻辑必须有序地运行,因此时钟偏差必须保持在最低水平以确保电路正确运行。设备的时钟频率越高,可允许的偏差越小。
随着特征尺寸的减少,时钟偏差的问题将更加严重。相比以前,特定晶片中将分为慢速芯片和快速芯片;由于密度大幅增加,单个芯片中的变量也将有所体现。这种状况的性质对于大型单片同步设备意义非常重大。
采用异步 DSP 核心可避免此类问题。DSP 核心基于小型自计时电路。因此所有定时对于该逻辑块相关的小区域都是本地的。
稳定性更高半导体主要受三大物理属性影响制作流程速度、电源电压电平和温度。如果这些特征发生任何变化,将造成晶体管运转更快或更慢的情况。
同步电路必须在上述参数的最佳和最差状态值下进行静态时序分析static timing analysis),以确保设备工作正常。换而言之,同步电路有一个可以使电路停止工作的切断点
由于异步电路是自计时电路,因此它们在物理特征变化时只须加速或减速。因为控制自计时的逻辑与处理逻辑处于相同区域,所以温度和电压等环境变化都会对两者造成影响。所以,异步电路针对抵抗动态电压下降等瞬时变化的抗影响性能更好,还将根据长期温度和电压变化进行自动调整。
通用异步 DSP
由于成功采用异步设计技术的各种设备不断出现异步设计正受到越来越多的关注。异步逻辑的优点众所周知。包括低和更稳定的设计等等。
直到最近异步电路仅仅在非常必要时才使用。由于学术界的偏见,它们通常被视为边缘产品。现在,许多商用设备已经开发了上述针对各类小众市场的功能。
完全基于异步逻辑的通用 DSP 核心的出现表明现有的工具、技术和知识创造的商用产品可应用于更大的客户群体。更吸引人的是,该设备可与任何现有 DSP 一样进行同样的编程和操作。也就是说,这个解决方案在丝毫不影响可用性的基础上,实现了异步技术的所有优点。

相关帖子

沙发
minzisc| | 2017-1-2 22:40 | 只看该作者
低功耗不是MSP430吗?

使用特权

评论回复
板凳
minzisc| | 2017-1-2 22:42 | 只看该作者
DSP这么大计算量怎么能够低功耗的?

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

24

主题

24

帖子

1

粉丝