CMOS 技术—ADS6148
当关注如何在保持较佳 SNR 和 SFDR 性能的同时尽可能地降低功耗时,我们 一般利用 CMOS 技术来开发高速数据转换器。但是,CMOS 转换器的 PSRR 一般并不如 BiCOM ADC 的好。ADS6148 产品说明书列出了 25 dB 的 PSRR, 而在模拟输入电源轨上 ADS5483 的 PSRR 则为 60dB。
ADS6148EVM 使用一种板上电源,其由一个开关稳压器 (TPS5420) 和一个低 噪声、5-V 输出 LDO (TPS79501) 组成,后面是一些 3.3-V 和 1.8-V 电源轨的 低噪声 LDO(请参见图 10)。与使用 ADS5483EVM 的 5 个实验类似,我们 使用 ADS6148EVM 进行了下面另外 5 个实验,其注意力只集中在 3.3-VVDDA 电 压 轨 的 噪 声 上 面 。 1.8-VDVDD 电 压 轨 外 置 TPS5420 实验 表 明 对 SNR 和 SFDR 性能没有什么大的影响。
图 10 使用 ADS6148EVM 的 5 个实验电源结构
实验 6—将一个 5-V 实验室电源连接到两个低噪声 LDO(一个使用 3.3-V 输 出,另一个使用 1.8-V 输出)的输入。LDO 并未给实验室电源带来任何有影响 的噪声。
实验 7—将一个 10-V 实验室电源连 接到 TPS5420 降压稳压器,其与 一个5.3-V 输出连接,像“实验 2”连接 ADS5483 一样。TPS79501 生成了一个过滤后的 5.0-V 电压轨,其向 3.3-V 输出和 1.8-V 输出 LDO 提供输入,如图 10所示。
实验 8—所有 3.3-VVDDA 电压轨 LDO 均被绕过。TPS5420 配置为一个 3.3-V 输出,该输出直接连接到 3.3-VVDDA 电压轨。TPS79601 生成 1.8-VDVDD 电压轨, 并通过一个外部 5-V 实验室电源供电。
实验 9—该实验配置方法与“实验 8”相同,但去除了 TPS5420 输出的 RC 缓 冲器电路。
实验 10—一个 4-Ω 功率电阻连接到 TPS5420 的 3.3-V 输出。这样做可极大地 增加 TPS5420 的输出电流,从而模拟一个附加负载。另外,像“实验 5”的ADS5483 一样,它带来了更高的开关杂散和更多的振铃。