正弦波是频域中唯一存在的波形,这是频域中最重要的规则,即正弦波是对频域的描述,因为时域中的任何波形都可用正弦波合成。这是正弦波的一个非常重要的性质。然而,它并不是正弦波的独有特性,还有许多其他的波形也有这样的性质。正弦波有四个性质使它可以有效地描述其他任一波形:
(1)时域中的任何波形都可以由正弦波的组合完全且惟一地描述。
(2)任何两个频率不同的正弦波都是正交的。如果将两个正弦波相乘并在整个时间轴上求积分,则积分值为零。这说明可以将不同的频率分量相互分离开。
(3)正弦波有精确的数学定义。
(4)正弦波及其微分值处处存在,没有上下边界。
使用正弦波作为频域中的函数形式有它特别的地方。若使用正弦波,则与互连线的电气效应相关的一些问题将变得更容易理解和解决。如果变换到频域并使用正弦波描述,有时会比仅仅在时域中能更快地得到答案。
时域分析与频域分析是对模拟信号的两个观察面。时域分析是以时间轴为坐标表示动态信号的关系;频域分析是把信号变为以频率轴为坐标表示出来。一般来说,时域的表示较为形象与直观,频域分析则更为简练,剖析问题更为深刻和方便。目前,信号分析的趋势是从时域向频域发展。然而,它们是互相联系,缺一不可,相辅相成的。
|