打印
[资料分享]

AD/DA转换技术的发展历程及其趋势

[复制链接]
2940|23
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
Violin11|  楼主 | 2018-12-5 16:55 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
AD/DA转换技术的发展历程及其趋势




引言   

        随着电子产业数字化程度的不断发展,逐渐形成了以数字系统为主体的格局。A/D转换器作为模拟和数字电路的接口,正受到日益广泛的关注。随着数字技术的飞速发展,人们对A/D转换器的要求也越来越高,新型的模拟/数字转换技术不断涌现。本文着重介绍了当前几种常用的模拟/数字转换技术;并通过对数字技术发展近况的分析,探讨了模拟/数字转换技术未来的发展趋势。
  
A/D转换器的发展历史
  
     计算机、数字通讯等数字系统是处理数字信号的电路系统。然而,在实际应用中,遇到的大都是连续变化的模拟量,因此,需要一种接口电路将模拟信号转换为数字信号。A/D转换器正是基于这种要求应运而生的。1970年代初,由于MOS工艺的精度还不够高,所以模拟部分一般采用双极工艺,而数字部分则采用MOS工艺,而且模拟部分和数字部分还不能做在同一个芯片上。因此,A/D转换器只能采用多芯片方式实现,成本很高。1975年,一个采用NMOS工艺的10位逐次逼近型A/D转换器成为最早出现的单片A/D转换器。
  
  
模拟/数字转换技术的发展现状
  
通常,A/D转换器具有三个基本功能:采样、量化和编码。如何实现这三个功能,决定了A/D转换器的电路结构和工作性能。A/D转换器的类型很多,下面介绍几种目前常用的模拟/数字转换技术。
  
全并行模拟/数字转换
  
全并行A/D转换器的结构如图1所示。它的工作原理非常简单,模拟输入信号同时与2N-1个参考电压进行比较,只需一次转换就可以同时产生n位数字输出。它是迄今为止速度最快的A/D转换器,最高采样速率可以达到500MSPS。但是,它也存在很多不足。首先,硬件开销大,其功耗和面积与分辨率呈指数关系;其次,结构重复的并行比较器之间必须要精密匹配,任何失配都会造成静态误差。而且,这种A/D转换器还容易产生离散和不确定的输出,即所谓的“闪烁码”。所以,全并行A/D转换器只适用于分辨率较低的情况。

图1 N位全并行A/D转换器结构框图
  
减小全并行A/D转换器的输入电容电阻网络的级数是提高其性能的关键。为了达到这一目的,采用了各种新技术,如将全并行结构与插值技术相结合,可降低功耗和面积,从而可使全并行A/D转换器进行更高精度的模拟/数字转换。Lane C.设计了一个10位60MSPS转换速率的全并行A/D转换器,通过运用插值技术,将比较器的数目从1023个减小到512个,大大节省了功耗和面积。


  
两步型模拟/数字转换
  
两步型A/D转换器的结构如图2所示。首先,由一个粗分全并行A/D转换器对输入进行高位转换,产生N1位的高位数字输出,并将此输出通过数字/模拟转换,恢复为模拟量;然后,将原输入电压与此模拟量相减,对剩余量进行放大,再送到一个更精细的全并行模拟/数字转换器进行转换,产生N2位的低位数字输出;最后,将这两个A/D转换器的输出并联,作为总的数字输出。
  
与全并行A/D转换器相比,此种类型的A/D转换器虽然转换速度降低了,但是节省了功耗和面积,解决了全并行A/D转换器中分辨率提高与元件数目剧增的矛盾。因此,两步型A/D转换器可用于10位以上的模拟/数字转换,但是,它对剩余量放大器的要求很高,剩余量必须被放大到充满第二个A/D转换器的输入模拟量范围,否则,会产生非线性和失码。另外,第一级A/D转换器和D/A转换器的建立时间及精度是限制两步型A/D转换器工作速度的一个重要因素,如果建立时间不充分,势必导致转换结果出现误差,所以,大多数两步型A/D转换器都采用了数字校正技术来改善这一问题。Razavi,B.和Wooley,B.A.采用校正技术研制的两步型A/D转换器,其第一级比较器的建立时间只需10ns,失调电压可达到5mV,转换速度高达5MSPS,分辨率为12位。

图2 两步型A/D转换器的结构框图
插值折叠型模拟/数字转换
  
折叠结构如图3所示,其基本原理就是通过一个特殊的模拟预处理(图3中的阴影部分)产生余差电压,并随后进行数字化,获得最低有效位(LSB),最高有效位(MSB)则通过与折叠电路并行工作的粗分全并行A/D转换器得到,几乎在对信号采样的同时,对余差进行采样。


 
图3 折叠结构框图
  
图3中,折叠电路的传输函数是理想情况,实际电路很难实现。所以,一般的折叠结构都具有非线性,但其过零点处的非线性为0。若只考虑这些过零点,则Vin与Vrj之差的极性可以被正确确定,再采用插值的办法产生额外的过零点来解决低位。这就是插值折叠的基本思想,它既利用了折叠特性,又不带来额外的非线性。
  
各种新技术的运用,使插值折叠型A/D转换器的性能不断提高。这里介绍两种新技术:电流式插值系统和级联结构。用电阻实现的电压式插值器,其精度受到电阻匹配度的限制,而在电流式插值器中,信号是由电流幅度表示的,其精度更高,而且更适合在低电源电压下工作。Li,Y-C等人通过在细量化通路上采用电流模式信号处理技术来降低电压摆幅,获得了具有300MSPS转换速度、60MHz输入信号带宽、7位分辨率的A/D转换器。另一种改进方法就是采用级联结构。在无需增加并行输入级和细分A/D转换器中比较器数目的条件下,级联结构可将转换 精度提高到8位以上。
        


流水线型模拟/数字转换
  
流水线型A/D转换器是对两步型A/D转换器的进一步扩展,其结构如图4所示。它将一个高分辨率的n位模拟/数字转换分成多级的低分辨率的转换,然后将各级的转换结果组合起来,构成总的输出。每一级电路由采样/保持电路(S/H)、低分辨率A/D转换器、D/A转换器、减法器和可提供增益的级间放大器组成。

 
图4 流水线型A/D转换器结构框图
  
这种类型的A/D转换器具有以下优点:每一级的冗余位优化了重叠误差的纠正,具有良好的线性和低失调;每一级都具有各自独立的采样保持放大器,因此允许流水线各级同时对多个采样进行处理,从而提高了转换速度;分辨率相同的情况下,电路规模及功耗大大降低。但它也存在一些缺点:复杂的基准电路和偏置结构;输入信号必须穿过数级电路,造成流水延迟;同步所有输出需要严格的锁存定时;对工艺缺陷和印刷线路板较敏感,这会影响增益非线性、失调及其它参数。
      
目前,普遍采用两种新技术来提高流水线A/D转换器的性能。一种是时间交织技术,使多条流水线并行工作。通过采用这种技术,可大大提高转换速率,但并行的通道数不能太多,否则,会大大增加芯片面积和功耗,而且各个通路之间需要高度匹配,在工艺上很难实现。Sumanen,L.等人设计了一个具有4个并行通道的流水线A/D转换器,采用0.5μmCMOS工艺实现。该A/D转换器的采样率高达200MSPS,分辨率为10位。另一种新技术就是数字校准技术,其主要思想是将校准周期内测量到的误差存放在存储器中,然后在正常运算周期内,通过原始码寻址,得到校对码,再通过原始码和校对码的运算,得到最终的数字输出。这种技术可对模拟电路的失调不匹配以及非线性引入的误差等进行有效的校正,从而使流水线A/D转换器的精度超过10位。Hakarainen,V.等人研制的交织型流水线A/D转换器,运用这种校正技术来校正子D/A转换器的误差,并对各并行通道之间增益和失调电压的失配进行补偿,从而在10位的器件匹配精度下获得了14位的转换精度。
  
逐次逼近型模拟/数字转换
  
逐次逼近型A/D转换器的结构如图5所示,其工作原理如下:输入信号的抽样值与D/A转换器的初始输出值相减,余差被比较器量化,量化值再来指导控制逻辑是增加还是减少D/A转换器的输出;然后,这个新的D/A转换器输出值再次从输入抽样值中被减去,不断重复这个过程,直至其精度达到要求为止。由此可见,这种A/D转换器在一个时钟周期里只完成1位转换,N位转换就需要N个时钟周期,故它的采样率不高,输入带宽也较低;但电路结构简单,面积和功耗小,而且不存在延迟问题。
  
逐次逼近型A/D转换器的一个关键部分就是D/A转换器,它制约着整个A/D转换器的精度和速度。D/A转换器传统的制作方法是用精密电阻网络实现,但是它的精度不高。以电容阵列为基础,采用电荷重分布技术的D/A转换器可以获得更高的精度,这主要是由于在MOS电路中比较容易制造出小容量的精密电容,而且电容损耗极小。Gan,J-H等人采用非二进制的电容阵列结构实现D/A转换器,并采用自校准技术提高电容的匹配度,使D/A转换器的精度高达22位,制作出功耗为50mW的16位1.5MSPS高性能逐次逼近型A/D转换器。


 
图5 逐次逼近型A/D转换器结构框图

  
Σ-Δ模拟/数字转换
  
Σ-Δ A/D转换器的结构如图6所示,它由Σ-Δ调制器和数字滤波器组成。调制器包括一个积分器和比较器,以及含有一个1位D/A转换器的反馈环,具有噪声整形功能,将量化噪声从基带内搬移到基带外的更高频段,从而提高了信噪比。而且,在进行Σ-Δ调制时,以远高于Nyquist采样率的频率对模拟信号进行采样,可减少基带范围内的噪声功率,使转换精度进一步提高。经调制器输出的是1位的高速Σ2Δ数字流,包含大量高频噪声,因此需要数字滤波器,滤除高频噪声,降低抽样频率。

 
图6 Σ2ΔA/D转换器结构框图
  
Σ-ΔA/D转换器是目前精度最高的A/D转换器。此外,它还具有极其优越的线性度、无需微调,以及更低的防混淆等优点。但是,过采样技术要求采样频率远高于输入信号频率,从而限制了输入信号带宽;而且,随着过采样率的提高,功耗会大大增加。因此,在保证一定精度的前提下,尽可能地降低过采样率变得十分关键。目前普遍采用的方法主要有两种:多级噪声整形技术(MASH),该技术采用多个级联的、稳定的一阶或二阶回路;另一种是多位结构的Σ-Δ A/D转换器,该结构含有一个n位并行A/D转换器和一个n位D/A转换器。为了获得更好的效果,通常将这两种方法结合使用。2001年,delRio,R.等人为ADSL应用设计的4阶Σ-Δ调制器采用2-1-1三级结构,其中最后一级含有4位量化器。该A/D转换器的过采样率仅为16,分辨率12位,采样率为4MSPS,功耗77mW。
  
另外,还有几种新技术被应用到Σ-Δ A/D转换器中,以提高其性能。带通Σ-Δ A/D转换器采用带通滤波器替代积分器,量化噪声被向上和向下移出有用频带,再由带通数字滤波器将有用频带外的其他信号和量化噪声滤除,从而直接对中频信号进行高精度转换。Schreier,R.等人采用0.35μm BiCMOS工艺制作的带通Σ-Δ A/D转换器,其带宽为333kHz,动态范围90dB,功耗为50mW,时钟频率高达32MHz。采用异质结工艺制作的连续时间Σ-Δ A/D转换器,其带宽比开关电容型Σ-Δ A/D转换器大得多,从而使Σ-Δ A/D转换器可用于射频领域。一个采用InPHBT工艺实现的二阶Σ-Δ调制器,其分辨率为12位,信号带宽为50MHz,采样率为3.2GHz。将多个Σ-Δ A/D转换器并联起来,对输入进行模拟预处理,对输出进行数字后处理,可获得与提高过采样比一样的效果,实现奈氏采样率的Σ-Δ A/D转换器(过采样比为1),从而进一步提高输入信号带宽。奈氏采样率Σ-Δ A/D转换器,其并行通道数为8,输入信号带宽为160kHz。
  
A/D转换器的比较与分类
  
表1对各种A/D转换器的分辨率、转换速度和功耗等性能进行了比较。根据A/D转换器的速度和精度,大致可分为三类。
  
1)高速低(或中等)精度A/D转换器,具体的结构有全并行、两步型、插值折叠型和流水线型。此类A/D转换器速度快,但是精度不高,而且消耗的功耗大,占用的芯片面积也很大,主要用于视频处理、通信、高速数字测量仪器和雷达等领域。
  
2)中速中等精度A/D转换器。这一类型的A/D转换器是以速度来换取精度,如逐次逼近型A/D转换器。这一类A/D转换器的数据输出通常是串行的,它们的转换速度在几十kHz到几百kHz之间,精度也比高速A/D转换器高(10~16位),主要用于传感器、自动控制、音频处理等领域。
  
3)中速或低速高精度A/D转换器。此类A/D转换器速度不快,但精度很高(16~24位),如Σ-ΔA/D转换器。该类型A/D转换器主要用于音频、通信、地球物理测量、测试仪、自动控制等领域。

表1 各种A/D转换器的性能比较
  
模拟/数字转换技术的发展趋势
  
当前,数字处理系统正在飞速发展,在视频领域,高清晰度数字电视系统(HDTV)的出现,将广播电视推向了一个更高的台阶,HDTV的分辨率与普通电视相比至少提高了一倍。在通信领域,过去无线通信系统的设计都是静态的,只能在规定范围内的特定频段上使用专用调制器、编码器和信道协议。而软件无线电技术(SDR)能更加灵活、有效地利用频谱,并能方便地升级和跟踪新技术,大大地推动了无线通信系统的发展。在高精度测量领域,高级仪表的分辨率在不断提高,电流到达μA量级,电压到达mV甚至更低;在音频领域,各种高性能专业音频处理设备不断涌现,如DVD-Audio和超级音频CD(SACD),它们能处理更高质量的音频信号。

为了满足数字系统的发展要求,A/D转换器的性能也必须不断提高,它将主要向以下几个方向发展:高转换速度:现代数字系统的数据处理速度越来越快,要求获取数据的速度也要不断提高。比如,在软件无线电系统中,A/D转换器的位置是非常关键的,它要求A/D转换器的最大输入信号频率在1GHz和5GHz之间,以目前的技术水平,还很难实现。因此,向超高速A/D转换器方向发展的趋势是清晰可见的。

        
高精度:现代数字系统的分辨率在不断提高,比如,高级仪表的最小可测值在不断地减小,因此,A/D转换器的分辨率也必须随之提高;在专业音频处理系统中,为了能获得更加逼真的声音效果,需要高精度的A/D转换器。目前,最高精度可达24位的A/D转换器也不能满足要求。现在,人们正致力于研制更高精度的A/D转换器。

        
低功耗:片上系统(SOC)已经成为集成电路发展的趋势,在同一块芯片上既有模拟电路又有数字电路。为了完成复杂的系统功能,大系统中每个子模块的功耗应尽可能地低,因此,低功耗A/D转换器是必不可少的。在以往 的设计中,5MSPS8~12位分辨率A/D转换器的典型功耗为100~150mW。这远不能满足片上系统的发展要求,所以,低功耗将是A/D转换器一个必然的发展趋势。

  总之,各种技术和工艺的相互渗透,扬长避短,开发出适合各种应用场合,能满足不同需求的A/D转换器,将是模拟/数字转换技术的未来发展趋势;高速、高精度、低功耗A/D转换器将是今后数据转换器发展的重点。

相关帖子

沙发
Violin11|  楼主 | 2018-12-5 16:56 | 只看该作者
AD/DA转换技术的发展历程及其趋势

文档1.pdf

220.96 KB

使用特权

评论回复
板凳
xyz549040622| | 2018-12-6 09:53 | 只看该作者
支持下!

使用特权

评论回复
地板
htmlme| | 2019-1-10 16:58 | 只看该作者
转换器的内部电路构成无太大差异

使用特权

评论回复
5
pklong| | 2019-1-10 16:58 | 只看该作者
大多数DA转换器由电阻阵列和n个电流开关(或电压开关)构成。

使用特权

评论回复
6
touser| | 2019-1-10 16:58 | 只看该作者
利用单片机PWM实现DA转换

使用特权

评论回复
7
myiclife| | 2019-1-10 16:59 | 只看该作者
般说来,由于电流开关的切换误差小

使用特权

评论回复
8
uytyu| | 2019-1-10 16:59 | 只看该作者
电流开关型电路如果直接输出生成的电流

使用特权

评论回复
9
iyoum| | 2019-1-10 16:59 | 只看该作者
电压输出型DA转换器虽有直接从电阻阵列输出电压的

使用特权

评论回复
10
wwppd| | 2019-1-10 16:59 | 只看该作者
直接输出电压的器件仅用于高阻抗负载

使用特权

评论回复
11
jkl21| | 2019-1-10 16:59 | 只看该作者
转换器中有使用恒定基准电压的

使用特权

评论回复
12
maqianqu| | 2019-1-10 17:00 | 只看该作者
必须外接运算放大器。

使用特权

评论回复
13
dspmana| | 2019-1-10 17:01 | 只看该作者
需要DAC出来接运放电压跟随

使用特权

评论回复
14
iyoum| | 2019-1-10 17:02 | 只看该作者
一般采用内置输出放大器以低阻抗输出。

使用特权

评论回复
15
htmlme| | 2019-1-10 17:02 | 只看该作者
一般按输出是电流还是电压、能否作乘法运算等进行分类。

使用特权

评论回复
16
uytyu| | 2019-1-10 17:02 | 只看该作者
电流输出型DA转换器     

使用特权

评论回复
17
pklong| | 2019-1-10 17:02 | 只看该作者
按数字输入值切换开关,产生比例于输入的电流(或电压)。

使用特权

评论回复
18
myiclife| | 2019-1-10 17:02 | 只看该作者
大多采用电流开关型电路

使用特权

评论回复
19
touser| | 2019-1-10 17:02 | 只看该作者
有些是内部自带AD、DA的

使用特权

评论回复
20
dspmana| | 2019-1-10 17:02 | 只看该作者
积分型、逐次逼近型、并行比较型/串并行型、∑-Δ调制型这个有很多种呢。

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

717

主题

1010

帖子

3

粉丝