import cv2
import dlib
import os
import sys
from scipy import misc
import time
from multiprocessing import Process, JoinableQueue, Queue
from random import random
import time
import glob
import facenet.src.align.detect_face as detect_face
import numpy as np
import tensorflow as tf
#tasks_queue = JoinableQueue()
results_queue = Queue()
convert_queue = Queue()
message_queue = Queue()
image_extension = ".jpg"
target_img_size = 160
IsCatchVideoQuit = False
IsFaceDectecdQuit = False
name = input('please input your name:')
window_name = "face picture entry"
src_path,_ = os.path.split(os.path.realpath(__file__))
print(src_path)
data_dir = os.path.join(src_path,"data")
print(data_dir)
output_dir = os.path.join(data_dir,name)
#size = 64
img_dir = os.path.join(src_path,"images")
size_dir = os.path.join(img_dir,"%d" % target_img_size)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# 改变图片的亮度与对比度
def relight(img, light=1, bias=0):
w = img.shape[1]
h = img.shape[0]
#image = []
for i in range(0,w):
for j in range(0,h):
for c in range(3):
tmp = int(img[j,i,c]*light + bias)
if tmp > 255:
tmp = 255
elif tmp < 0:
tmp = 0
img[j,i,c] = tmp
return img
#使用dlib自带的frontal_face_detector作为我们的特征提取器
detector = dlib.get_frontal_face_detector()
#videoName = './' + name + '.avi'
videoName = "rtsp://admin:ABC_123456@172.17.208.150:554/Streaming/Channels/101?transportmode=unicast"
# 打开摄像头 参数为输入流,可以为摄像头或视频文件
def CatchUsbVideo(out_queue,msg_q):
process_flag = False
cv2.namedWindow(window_name)
#视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
cap = cv2.VideoCapture(videoName)
n = 1
while cap.isOpened():
ok, frame = cap.read() #读取一帧数据
if not ok:
break
#显示图像并等待10毫秒按键输入,输入‘q’退出程序
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL) #cv2.WND_PROP_FULLSCREEN)
#cv2.moveWindow(window_name, screen.x - 1, screen.y - 1)
cv2.setWindowProperty(window_name, cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN)
n = n + 1
if n == 30:
if process_flag == True:
out_queue.put(frame)
n = 1
else:
frameresize = cv2.resize(frame,(1280,800))
cv2.imshow(window_name, frameresize)
c = cv2.waitKey(10)
if c & 0xFF == ord('q'):
break
if c & 0xFF == ord('d'):
process_flag = True
if not msg_q.empty():
if msg_q.get() == "complate_msg":
break
#释放摄像头并销毁所有窗口
cap.release()
cv2.destroyAllWindows()
def ConvertUseTensorflowMtcnn(in_queue,msg_q):
margin = 32
index_num = 0
target_dir = os.path.join(img_dir,"images_data_%d" % target_img_size)
output_user_dir = os.path.join(target_dir, name)
if not os.path.exists(output_user_dir):
os.makedirs(output_user_dir)
minsize = 30 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold
factor = 0.709 # scale factor
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.25)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = detect_face.create_mtcnn(sess, None)
while 1:
file_name = in_queue.get()
print("====== file: %s" % file_name)
img = cv2.imread(file_name)
bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
print(bounding_boxes)
nrof_faces = bounding_boxes.shape[0]
print(nrof_faces)
if nrof_faces>0:
det = bounding_boxes[:,0:4]
det_arr = []
img_size = np.asarray(img.shape)[0:2]
print("====nrof_face: %d img size:" % nrof_faces)
print(img_size)
if nrof_faces == 1:
bounding_box_size = (det[:,2]-det[:,0])*(det[:,3]-det[:,1])
img_center = img_size / 2
offsets = np.vstack([ (det[:,0]+det[:,2])/2-img_center[1], (det[:,1]+det[:,3])/2-img_center[0] ])
offset_dist_squared = np.sum(np.power(offsets,2.0),0)
index = np.argmax(bounding_box_size-offset_dist_squared*2.0) # some extra weight on the centering
det_arr.append(det[index,:])
for i, det in enumerate(det_arr):
det = np.squeeze(det)
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-margin/2, 0)
bb[1] = np.maximum(det[1]-margin/2, 0)
bb[2] = np.minimum(det[2]+margin/2, img_size[1])
bb[3] = np.minimum(det[3]+margin/2, img_size[0])
cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
scaled = misc.imresize(cropped, (target_img_size, target_img_size), interp='bilinear')
output_filename = os.path.join(output_user_dir, ("%d" % index_num) +'.png')
filename_base, file_extension = os.path.splitext(output_filename)
output_filename_n = "{}{}".format(filename_base, file_extension)
misc.imsave(output_filename_n, scaled)
index_num += 1
#if os.path.exists(file_name):
#os.remove(file_name)
if index_num >= 5:
msg_q.put("complate_msg")
msg_q.put("complate_msg")
break
add = 30
def FaceDectection(in_queue,out_convert_queue,msg_q):
index = 0
num = 0
temporary_dir = os.path.join(output_dir,"%d" % index)
if not os.path.exists(temporary_dir):
os.makedirs(temporary_dir)
while 1:
img = in_queue.get()
g_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用detector进行人脸检测
dets = detector(g_img, 1)
for i, d in enumerate(dets):
print("----- i:%d\n" % i)
x1 = d.top() if d.top() > 0 else 0
y1 = d.bottom() if d.bottom() > 0 else 0
x2 = d.left() if d.left() > 0 else 0
y2 = d.right() if d.right() > 0 else 0
print("index: %d num %d " % (index,num))
face = img[x1-add:y1 + add,x2-add:y2 + add]
if face.shape[0] > 300 : # check picture size
g_img = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
if cv2.Laplacian(g_img, cv2.CV_64F).var() < 300:
continue
file = os.path.join(temporary_dir,str(num)+image_extension)
cv2.imwrite(file, face)
#out_convert_queue.put(file)
num += 1
if num >= 5:
img_file = os.path.join(temporary_dir,"*" + image_extension)
print(img_file)
img_name_list = glob.glob(img_file)
for nm in img_name_list:
out_convert_queue.put(nm)
index += 1
temporary_dir = os.path.join(output_dir,"%d" % index)
if not os.path.exists(temporary_dir):
os.makedirs(temporary_dir)
num = 0
if not msg_q.empty():
if msg_q.get() == "complate_msg":
break
#if __name__ == '__main__':
# CatchUsbVideo()
processes = []
p = Process(target=CatchUsbVideo, args=(results_queue,message_queue,))
p.start()
processes.append(p)
p = Process(target=FaceDectection, args=(results_queue,convert_queue,message_queue,))
p.start()
processes.append(p)
p = Process(target=ConvertUseTensorflowMtcnn, args=(convert_queue,message_queue,))
p.start()
processes.append(p)
for p in processes:
p.join()
while 1:
time.sleep(1)