使用 FFT 进行频谱分析

[复制链接]
1486|1
 楼主| gaoyang9992006 发表于 2019-1-24 22:36 | 显示全部楼层 |阅读模式
下面的示例说明了如何使用 FFT 函数进行频谱分析。FFT 的一个常用场景是确定一个时域噪声信号的频率分量。
首先创建一些数据。假设是以 1000 Hz 的频率对数据进行的采样。首先为数据构造一条时间轴,时间范围从 t = 0 至 t = 0.25,步长为 1 毫秒。然后,创建一个包含 50 Hz 和 120 Hz 频率的正弦波信号 x。
  1. t = 0:.001:.25;
  2. x = sin(2*pi*50*t) + sin(2*pi*120*t);
添加一些标准差为 2 的随机噪声以产生噪声信号 y。然后,通过对该噪声信号 y 绘图来了解该信号。
  1. y = x + 2*randn(size(t));
  2. plot(y(1:50))
  3. title('Noisy time domain signal')
158525c49cd4493209.png
很明显,通过观察该信号很难确定频率分量;这就是频谱分析为什么被广泛应用的原因。
得到带噪声信号 y 的离散傅里叶变换很容易;执行快速傅里叶变换 (FFT) 即可实现。
  1. Y = fft(y,251);
使用复数共扼 (CONJ) 计算功率频谱密度,即测量不同频率下的能量。为前 127 个点构造一个频率轴,并使用该轴绘制结果图形。(其余的点是对称的。)
  1. Pyy = Y.*conj(Y)/251;
  2. f = 1000/251*(0:127);
  3. plot(f,Pyy(1:128))
  4. title('Power spectral density')
  5. xlabel('Frequency (Hz)')
713385c49cd6f906e2.png
放大并仅绘制上限为 200 Hz 的图形。请注意 50 Hz 和 120 Hz 下的峰值。以下是原始信号的频率。
  1. plot(f(1:50),Pyy(1:50))
  2. title('Power spectral density')
  3. xlabel('Frequency (Hz)')
412925c49cd890e7e3.png

 楼主| gaoyang9992006 发表于 2019-1-24 22:37 | 显示全部楼层
更多例子,请查看帮助文件中与FFT相关的主题。里面有可以直接运行的实例。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

个人签名:如果你觉得我的分享或者答复还可以,请给我点赞,谢谢。

2052

主题

16403

帖子

222

粉丝
快速回复 在线客服 返回列表 返回顶部