/******************************************************************************
* [url=home.php?mod=space&uid=288409]@file[/url] main.c
* [url=home.php?mod=space&uid=895143]@version[/url] V3.00
* $Revision: 4 $
* $Date: 5/20/14 10:38a $
* [url=home.php?mod=space&uid=247401]@brief[/url] M051 Series SPI Driver Sample Code
*
* @note
* Copyright (C) 2014 Nuvoton Technology Corp. All rights reserved.
*****************************************************************************/
#include <stdio.h>
#include "M051Series.h"
#define TEST_COUNT 64
uint32_t g_au32SourceData[TEST_COUNT];
uint32_t g_au32DestinationData[TEST_COUNT];
/* Function prototype declaration */
void SYS_Init(void);
void SPI_Init(void);
/* ------------- */
/* Main function */
/* ------------- */
int main(void)
{
uint32_t u32DataCount, u32TestCount, u32Err;
/* Init System, IP clock and multi-function I/O.
In the end of SYS_Init() will issue SYS_LockReg()
to lock protected register. If user want to write
protected register, please issue SYS_UnlockReg()
to unlock protected register if necessary. */
SYS_Init();
/* Configure UART0: 115200, 8-bit word, no parity bit, 1 stop bit. */
UART_Open(UART0, 115200);
/* Init SPI */
SPI_Init();
printf("\n\n");
printf("+--------------------------------------------------------------------+\n");
printf("| M051 SPI Driver Sample Code |\n");
printf("+--------------------------------------------------------------------+\n");
printf("\n");
printf("\nThis sample code demonstrates SPI0 self loop back data transfer.\n");
printf(" SPI0 configuration:\n");
printf(" Master mode; data width 32 bits.\n");
printf(" I/O connection:\n");
printf(" P1.5 MOSI <--> P1.6 MISO \n");
printf("\nSPI0 Loopback test ");
u32Err = 0;
for(u32TestCount = 0; u32TestCount < 0x1000; u32TestCount++)
{
/* set the source data and clear the destination buffer */
for(u32DataCount = 0; u32DataCount < TEST_COUNT; u32DataCount++)
{
g_au32SourceData[u32DataCount] = u32DataCount;
g_au32DestinationData[u32DataCount] = 0;
}
u32DataCount = 0;
if((u32TestCount & 0x1FF) == 0)
{
putchar('.');
}
while(1)
{
/* Write to TX register */
SPI_WRITE_TX0(SPI0, g_au32SourceData[u32DataCount]);
/* Trigger SPI data transfer */
SPI_TRIGGER(SPI0);
/* Check SPI0 busy status */
while(SPI_IS_BUSY(SPI0));
/* Read received data */
g_au32DestinationData[u32DataCount] = SPI_READ_RX0(SPI0);
u32DataCount++;
if(u32DataCount > TEST_COUNT)
break;
}
/* Check the received data */
for(u32DataCount = 0; u32DataCount < TEST_COUNT; u32DataCount++)
{
if(g_au32DestinationData[u32DataCount] != g_au32SourceData[u32DataCount])
u32Err = 1;
}
if(u32Err)
break;
}
if(u32Err)
printf(" [FAIL]\n\n");
else
printf(" [PASS]\n\n");
/* Close SPI0 */
SPI_Close(SPI0);
while(1);
}
void SYS_Init(void)
{
/* Unlock protected registers */
SYS_UnlockReg();
/*---------------------------------------------------------------------------------------------------------*/
/* Init System Clock */
/*---------------------------------------------------------------------------------------------------------*/
/* Enable external 12MHz XTAL */
CLK_EnableXtalRC(CLK_PWRCON_XTL12M_EN_Msk);
/* Waiting for clock ready */
CLK_WaitClockReady(CLK_CLKSTATUS_XTL12M_STB_Msk);
/* Switch HCLK clock source to HXT and HCLK source divide 1 */
CLK_SetHCLK(CLK_CLKSEL0_HCLK_S_HXT, CLK_CLKDIV_HCLK(1));
/* Select HXT as the clock source of UART0 */
CLK_SetModuleClock(UART0_MODULE, CLK_CLKSEL1_UART_S_HXT, CLK_CLKDIV_UART(1));
/* Select HCLK as the clock source of SPI0 */
CLK_SetModuleClock(SPI0_MODULE, CLK_CLKSEL1_SPI0_S_HCLK, MODULE_NoMsk);
/* Enable UART peripheral clock */
CLK_EnableModuleClock(UART0_MODULE);
/* Enable SPI0 peripheral clock */
CLK_EnableModuleClock(SPI0_MODULE);
/*---------------------------------------------------------------------------------------------------------*/
/* Init I/O Multi-function */
/*---------------------------------------------------------------------------------------------------------*/
/* Set P3 multi-function pins for UART0 RXD and TXD */
SYS->P3_MFP = SYS_MFP_P30_RXD0 | SYS_MFP_P31_TXD0;
/* Setup SPI0 multi-function pins */
SYS->P1_MFP = SYS_MFP_P14_SPISS0 | SYS_MFP_P15_MOSI_0 | SYS_MFP_P16_MISO_0 | SYS_MFP_P17_SPICLK0;
/* Lock protected registers */
SYS_LockReg();
/* Update System Core Clock */
/* User can use SystemCoreClockUpdate() to calculate SystemCoreClock and CyclesPerUs automatically. */
SystemCoreClockUpdate();
}
void SPI_Init(void)
{
/*---------------------------------------------------------------------------------------------------------*/
/* Init SPI */
/*---------------------------------------------------------------------------------------------------------*/
/* Configure as a master, clock idle low, 32-bit transaction, drive output on falling clock edge and latch input on rising edge. */
/* Set IP clock divider. SPI clock rate = 2MHz */
SPI_Open(SPI0, SPI_MASTER, SPI_MODE_0, 32, 2000000);
/* Enable the automatic hardware slave select function. Select the SS pin and configure as low-active. */
SPI_EnableAutoSS(SPI0, SPI_SS, SPI_SS_ACTIVE_LOW);
}
/*** (C) COPYRIGHT 2014 Nuvoton Technology Corp. ***/
|