打印
[资料分享]

模拟退火算法模型

[复制链接]
393|0
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
Peonys|  楼主 | 2019-2-21 17:48 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
模拟退火算法模型


模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据metropolis准则,粒子在温度t时趋于平衡的概率为e-δe/(kt),其中e为温度t时的内能,δe为其改变量,k为boltzmann常数。用固体退火模拟组合优化问题,将内能e模拟为目标函数值f,温度t演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(cooling schedule)控制,包括控制参数的初值t及其衰减因子δt、每个t值时的迭代次数l和停止条件s。


模拟退火算法的模型

模拟退火的基本思想:

(1) 初始化:初始温度t(充分大),初始解状态s(是算法迭代的起点), 每个t值的迭代次数l

(2) 对k=1,……,l做第(3)至第6步:

(3) 产生新解s′

(4) 计算增量δt′=c(s′)-c(s),其中c(s)为评价函数

(5) 若δt′<0则接受s′作为新的当前解,否则以概率exp(-δt′/t)接受s′作为新的当前解.

(6) 如果满足终止条件则输出当前解作为最优解,结束程序。

终止条件通常取为连续若干个新解都没有被接受时终止算法。

(7) t逐渐减少,且t->0,然后转第2步。


模拟退火算法新解的产生和接受可分为如下四个步骤:

第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是metropo1is准则: 若δt′<0则接受s′作为新的当前解s,否则以概率exp(-δt′/t)接受s′作为新的当前解s。

第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

模拟退火算法与初始值无关,算法求得的解与初始解状态s(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。


相关帖子

发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

640

主题

901

帖子

5

粉丝