打印

基于DSP+MCU的列车滚动轴承故障诊断系统设计与应用二

[复制链接]
2038|1
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
aass1|  楼主 | 2011-10-9 13:39 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
2 故障诊断

2.1 提取轴承特征

小波分析利用时间平移和多分辨率的概念,可以同时处理时、频分析,具有时频局部化和多分辨功能。其基本思想是用一族函数去表示或逼近一信号或函数,通过满足一定条件的基本小波函数的不同尺度的平移和展缩构成的。但在正交小波变换中,只对信号的低频成分进行了递推分解,导致高频成分的频率分辨率较低,表现为时一频分辨率在低频处频率分辨率高,在高频处时间分辨率高,频率分辨率却降低。利用DSP强大的数字处理功能,本系统采用常见的Hilbert变换法来提取包络信号,提高整个系统的可靠性和精确性。

实信号X(t)的Hilbert变换为:

2.2 小波奇异性检测

函数f(x)的局部奇异性与其小波变换的渐进衰减性之间的关系为:

式中:Wsf(x)为f(x)在尺度s上的小波变换。

本文根据小波变换各尺度上模极大值的传递性来判断奇异点的位置以及作奇异性指数计算。奇异性指数的计算如下:

设s=2j,在尺度i上Xk处的极大值为Mi=| Wsf(x)|,则在各尺度相应位置处的模极大值可构成序列{Mi},在i较小时,可以近似为:

由此可得:

根据上式计算几个尺度上的α,然后求平均值,即可得到信号在此时刻的Lip指数。

3 实例分析

实验用轴承参数如下:滚动体直径:0.84235英寸;支架直径:7.5653英寸;轮子直径:35.89英寸;接触角α:10°;车速:30 km/h。

当轴承外圈滚道发生点蚀、裂纹及表面剥落等局部损伤故障后,滚动轴承便产生冲击振动。利用加速度传感器获取轴承振动信号,采样频率为2*36SPS,滚动轴承正常、滚子破裂、多处外圈剥落时振动信号的时域波形如图3所示。按照前述方法对外圈剥落振动信号进行包络处理,并采用B样条函数进行7层小波变换,得到信号包络在特征尺度重构信号如图4所示。



通过检测经小波变换的模量极大点沿尺度的演变规律,可将噪声所产生的模量极大点与信号产生的模量极大点区分开。如果某模量极大点的幅值沿尺度的减小而显著增加,则为是由噪声产生的而予以剔除。为了考察模量极大点沿尺度的传播性,本文采用一个简单的方法做初步判断,即:如果某一尺度上的一个模量极大点的位置非常接近下一个尺度的一个模量极大点,并且它们具有相同的符号,那么可以认为该模量极大点传播到了下一个尺度上,否则即为沿尺度不传播的模量极大点,予以剔除。经过筛选所保留下来的各个尺度上的模量极大点就反映了包络信号的主要特征。图5分别表示正常、滚子破裂、多处外圈剥落三种情况的Lip指数分布(纵坐标(-1<α<1),横坐标(O~500)),Lip指数如表1所示。



从图5可以看出:由故障轴承与正常轴承相比,其信号奇异点明显增多。由表1可看出在同一时刻附近故障轴承的Lip指数明显较小,在同一时刻附近多处外圈剥落的Lip指数较小,故障较严重,这与实际解体检测情况一致。

4 结语

该系统充分利用单片机的控制功能强、DSP的运算能力强的特点,对较复杂的信号具有较强的处理能力。实验表明,该系统能满足列车滚动轴承故障诊断的实际需要,并减少了复杂的编程过程,有效地提高了工作效率,降低了诊断设备成本.

相关帖子

沙发
中国无芯| | 2011-10-27 20:54 | 只看该作者
架构够复杂的

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

0

主题

799

帖子

1

粉丝