打印

仪器和测量技术中的DSP

[复制链接]
1573|0
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
tianyu01|  楼主 | 2011-11-7 13:08 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
概述

所谓信号处理是指对信号进行滤波、变换、分析、加工、提取特征参数等的过程。在电子仪器和测量中,最典型的是用频谱分析仪对信号进行频谱分析,从而了解和取得信号的频率(或频谱)特性。在现代计算机和相关的技术发展起来以前,这一过程只能用以硬线技术构成的传统的频谱分析仪实现。众所周知,这种传统的频谱分析仪,无论在设计制造还是所采用的元器件方面,都要求较高的水平。尤其是频率范围宽、指标高的,设计制造的难度就更高,而其价格也非常昂贵。但是,自从计算机及随之而兴起的数字信号处理(即DSP〉技术日趋成熟和发展起来以后,解决信号频谱分析的途径,正在逐步由DSP所取代。

关于离散傅立叶变换和数字滤波

作为信号处理,和频谱分析最直接相关的是傅立叶(Fourier)变换即FT。人们已经熟知,离散傅立叶变换(即DFT)和数字滤波是DSP的基本内容。目前,DFT已有许多实用有效的快速DFT算法即FFT算法和软件,其性能主要决定于采样(实际上还包括模/数转换)率和CPU的运算速度。将任意信号(主要是反映客观物理世界的各种变化量,而且多半是连续变化的模拟量)转换为能够由CPU处理的数字数据这一过程称为“数字化”,它包括采样和量化两个步骤,量化即通常所说的模/数转换。采样的速率和被处理的信号有关。为了保证数字化后的信号数据不丧失原信号的特性,采样频率应大于或至少等于信号截止频率的2倍。这就是著名的奈奎斯特(Nyquist)采样定理,或称奈奎斯特采样率。奈奎斯特采样定理是很容易证明的。至于CPU的运算速度,众所周知,现在的微机已达数百甚至上千兆赫的水平。为了提高或实现主要是FFT等运算的高速化,美国得州仪器公司(IT)很早开始就一直致力于专用的DSP芯片的研制和生产。著名TMS320系列芯片已为科技界所熟知。据最近报道,新的TMS320C64x的运行速度己高达600MHz,其内核的8个功能单元能在每个周期同时执行4组16位MAC运算或8组8位MAC运算。单个C64xDSP芯片能同时完成一个信道的MPEG4视频编码、一个信道的MPEG4视频解码和一个MPEG2视频解码,并仍有50%的余量留给多通道语音和数据编码、自然,还有其他一些厂商也研制生产了不少品种专用或通用的DSP芯片。

在上一个世纪中,电滤波器的发展经历了从无源到有源和从模拟到数字两个过程。高精度无源滤波器从设计到制造都是难度非常高的技术。有源滤波器虽然很大地改进了滤波器的性能,也降低了一些制造工艺的难度,但从其性能的大幅度改进,与其它信号处理技术的结合,实现的手段之便捷,还是要数数字滤波器后来居上。当然,这和EDA技术的发展也有关系。

数字滤波器是一种离散系统,其特性或传递函数由以Z-变换为基础的差分方程描述。数字滤波器分两大类,即IIR有限脉冲响应滤波器和FIR无限脉冲响应滤波器。前者又称为“递归式”滤波器,后者又称为“非递归式”滤波器。人们可以根据对信号处理的要求,确定描述系统的差分方程,再根据差分方程设计出滤波器。滤波器的实现也有两种方式,一种为纯软件方式,即成为一个算法软件或软件包;另一种为硬件方式,即设计成具体的硬线电路,甚至制成专用或通用的芯片。关于数字滤波器的设计方法和成熟的软硬件产品,都不难获得。这里不再详述。

信号的其它正交变换

已知,傅立叶变换或傅立叶分析隐含这样的意义:

EP一个信号是由其FT所得频谱上各分量所代表的正弦波合成的。在这个意义上,我们把表示这些正弦波一组正交的正弦函数称为傅立叶变换的正交基函数(也可以用复函数的形式表示)。研究表明,不仅正弦函数可以作为正交变换的基函数,而是只要满足正交完备的函数系,都可以作为基函数,对信号进行正交变换分解分析(正弦函数自然是正交完备的函数系)。因此,我们把这些变换笼统地称为“正交变换”。实用中最使人感兴趣的非正弦正交函数有雷德梅彻(Rademacher)函数、哈尔(Haar)函数和沃尔什(Wald)函数等。一段时期以来,用得最多的当属沃尔什函数,它是由沃尔什在1923年完备化的雷德梅彻函数。沃尔什函数是一组矩形波,其取值为1和-1,非常便于计算机运算。沃尔什函数有三种排列或编号方式,即按列率排列或沃尔什排列、佩利(Paley)排列和阿达玛(Hadamard)排列。这三种排列各有特点.而以阿达玛排列最便于快速计算。采用阿达玛排列的沃尔什函数进行的变换称为沃尔什-阿达玛变换,简称WHT或直称阿达玛变换。由于离散正交变换的运算常以矩阵乘法的方式完成,而沃尔什-阿达玛函数组的矩阵形式只有1和-l两种元素,同时这种阿达玛短阵的规律性非常强,可以用简单的算法产生,所以WHT的快速算法很容易实现。现在,这种快速算法及其软件已经有很成熟的商品。当然,在使用这种变换时我们必须记住,它所得出的谱是以短形波为基础的。


另一种常用的正交变换是离散余弦变换DCT。已知,傅立叶变换的基函数是正弦函数,即其每一个分量是一个正弦波(或一个复向量)分量的次数决定该正弦波的频率,而各个分量的相位则构成信号的相位谱。也就是说,一个信号的傅立叶谱包括两部分,一是幅度特性,一是相位特性;或者作为复向量的实部余弦分量和作为虚部的正弦分量。换句话说,仅仅幅度特性谱并不能完整地代表该信号,而必须补克相位特性才是完整的。这当然既使表示和运算处理复杂化,又使表示信号的数据量加大。经过研究表明,如果将信号坐标的原点作适当的偏移,就可以使变换后的结果,只存在正弦波的正弦分量或余弦分量二者中的一个。这就是正弦变换或余弦变换。信号处理中的离散余弦变换DCT,就是将信号坐标的原点左移半个采样间隔得到的。DCT具有很优良的信息特性.且有有效的快速算法,所以在制定MPEG标准时,将它定为图像压缩编码的标准变换。

这一节的最后,顺便提一下离散K-L(KarhunenLover)变换。KLT通常被称为最佳变换,因为采用KLT的滤波器和信息压缩编码失真最小。但由于KLT的变换基函数是不定的,而且至今没有快速算法,所以只在特殊需要的场合才使用。

相关帖子

发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

0

主题

785

帖子

1

粉丝