在MOTOROLA A68K系列MCU上移植μC/OS-II
接上文
三、移植中的几点注意事项 由于μC/OS-II运行的实时性,调试内核几乎不可能。一旦移植过程中内核运行不稳定,很难确定是什么地方的问题,更困难的是有些现象几乎是不可重复的。这就需要详细了解内核运行机理,认真分析,找出可能存在的问题。下面就来分析这些移植过程中的问题。 1.编译器的优化选项 在移植过程中,除了要熟悉μC/OS-II和目标芯片之外,熟悉使用的C编码器也非常重要。通常C编译器都会提供一些优化代码的选项,在移植μc/OS-II的过程中,这些选项往往会带来麻烦。下面是移植中与HIWARE的C编译器有关的例子。 通常在调用子程序或进入中断时,C编译器会自动保存CPU内部寄存器到堆栈中。例如,在进入中断时编译器会加入下面2条指令: LINK #$0000,A6; MOVEM.L D0/D1/D3/D4/D5/D6/D7/A0/A1/A2/A3/A4/A5,-(A7); 这2条汇编指令的作用是将CPU的数据寄存器D0~D7、地址寄存器A0~A5保存到堆栈中,再将此时的堆栈指针A7也保存到堆栈中,并使用A6作为临时的堆栈指针。这本是一个非常好的优化选项,可以防止在中断中偶然地更改了数据寄存器或地址寄存器;但在μC/OS-II中,这个机制将对OS_CPU_C.C和OS_CPU_ASM.ASM中的几个子程序和中断服务例程产生致命的影响。 OS_CPU_C.C和OS_CPU_ASM.ASM中的子程序中断引发任务调度,当前的任务被挂起。挂起任务是通过下面的语句来完成的: MOVEM.L A0-A6/D0-D7,-(A7); MOVE.L @OSTCBCur,A2; MOVE.L (A2),A1; MOVE.L A7,(A1); 保存任务的指针和所有数据地址寄存器的值,那么理想情况下,此时的任务堆栈应该是如图1所示的情况(以OSCtxSw()函数为例,可以对应到OS_CPU_C.C和OS_CPU_ASM.ASM中的其他函数和中断处理例程)。 那么恢复挂起的任务时,只要通过如下语句: MOVE.L OSTCBHighRdy,A1; MOVE.L @OSTCBCur,A2; MOVE.L A1,(A2); MOVE.L (A1),A7; MOVEM.L (A7)+,A0-A6/D0-D7; 将保存在任务TCB中的任务堆栈指针恢复,再恢复数据地址寄存器,最后执行OSCtxSw()的中断返回,就可以顺利地恢复被挂起的任务。 如果C编译器在OSCtxSw()函数入口处插入了2条保存数据地址寄存器和堆栈指针的语句后,再执行挂起任务的语句,任务的堆栈会变成图2所示的情况。编译器引起了堆栈的变化,如果所有的任务都是用这种方式挂起和恢复的,并不会产生致命的问题,因为编码器退出OSCtxSw()函数时会插入如下语句恢复堆栈: MOVEM.L (A7)+,D0-D7/A0-A5; UNLK A6; 问题在于初始化任务的时候,每个任务实际上是按照图1所示的堆栈结构被初始化的,那么,按照图2的堆栈结构来恢复自然会导致堆栈崩溃。 解决这个问题的方法很多,可以改定任务初始化的代码以适应C编译器的这个“优化”,也可以在进入OSCtxSw()函数时首先调用如下语句恢复堆栈,抵消C编码器的影响: MOVEM.L (A7)+,D0-D7/A0-A5; UNLK A6; 而在退出OSCtxSw()函数前再调用如下语句模拟出更动的堆栈: LINK #$0000,A6 MOVEM.L D0-D7/A0-A5,-(A7); 较好的方法当然是调整编译器,取消这个优化选项。如果无法调整编译器,就只有用以上办法来适应编译器了。 2.开关中断的方法 在μC/OS-II中,开关中断是非常重要的,它可以保证关键代码或访问全局变量时不受中断的意外影响。CPU32的中断控制比较复杂,提供了7级具有不同级别的中断;可以选择关闭或打开某几级中断。但多级中断会使得μC/OS-II的中断处理变得复杂。在简单的应用或初次尝试移植μC/OS-II时,可以使用全开全关的方法。 如果考虑多级中断,必须注意到中断开关级别的控制是一个重要的信息,在关闭中断之前需要将这个信息保存起来,在对应的开中断时恢复这个中断级别控制信息。最容易想到的方法是用一个全局变量存存这个信息。 使用这个方法的程序如下: #define OS_EXIT_CRITICAL() asm move SR_TEMP,sr; #define OS_ENTER_CRITICAL() asm move.w SR,SR_TEMP; asm ori.w #0x0700,SR; 接着构造两个任务,每个任务分别向屏幕输出一句话,同时修改内核的代码,让空闲任务也输出一句话。运行内核,通常在几分钟内会发现内核停止调试,只有空闲任务不停地向屏幕输出。这种情况非常麻烦,因为根据无法通过调试手段判断何时何处导致内核停止调度。 分析一下,当只有空闲任务运行时,代码为: move.w sr,sr_temp ori.w #0700,sr addi.1 #1,OSIdleCtr move.w sr_temp,sr jmp **** 这5句语句在循环运行,而中断(这时只有定时中断)可以在任意一句语句中间切入。那么,如果在MOVE.W SR,SR_TEMP的时候产生了中断,就会执行中断(因为正要关中断,但还没有关上);而中断程序调用的OSIntENTER和OSIntEXIT都会调用OS_ENTER_CRITICAL()来关闭中断,递增中断嵌套层数全局变量。这时,再次执行MOVE.W SR,SR_TEMP变量就被改写成关中断的值,当从中断返回到IDLE任务执行MOVE.W SR_TEMP,SR时,就关闭了中断,而不是恢复原来的状态寄存器。这样就导致内核无法响应中断,无法调度任务,只有IDLE任务在运行。 如何解决?最容易想到的方法是再增加一个全局变量,用来保存进入中断时的中断开关信息,退出中断恢复这个信息;但如果考虑到中断嵌套,相同的情况又出现了,并且如果一个任务在执行MOVE.W SR,SR_TEMP时被中断打断并且发生了任务调度,那么当个任务恢复时,它使用的中断信息SR_TEMP可以已经是被其他任务更改后的值了。内核无法响应中断,无法调度的任务可能依然存在。 给每个任务和中断都定义一个这样的全局变量,在不考虑中断嵌套的情况下似乎可以解决问题,但想象一下为每一个任务和中断提供一个单独的OS_ENTER_CRITICAL()和OS_EXIT_CRITICAL()函数所带来的工作量。显然这不一个好办法。 将中断信息推入堆栈是一个好主意,但我们会看到由此带来的一些更加隐蔽而复杂的问题。实现这个方法的程序代码如下: #define OS_ENTER_CRITICAL() asm move SR,-(A7); asm ori.w #0x0700,SR; #define OS_EXIT_CRITICAL() asm move (A7)+,sr; 这样,每次调用OS_ENTER_CRITICAL(),都将当前的中断开关信息保存到当前任务堆栈或系统堆栈中断OS_EXIT_CRITICAL()时,恢复这个信息。 使用了这个方法后,必须小心地计算堆栈的使用情况,修改OS_CPU_A.ASM和OS_CPU_C.C文件里的函数。以OSIntCtxSw()函数为例,这个函数将导致中断级的任务调度,即被中断打断的程序不能继续运行,退出中断中另一个优先级更高的任务得以运行。在这个函数中必须对被中断的任务堆栈进行清理,使得这个任务的堆栈看起来和一次正常的任务切换后的情况相同,这样,才能保证这个任务被正确地恢复运行。OSIntCtxSw()函数仅仅在OSICntExit()函数中被调用。 须指出的是,在中断发生时,CPU32已经将全部的寄存器和状态寄存器,PC指针内容保存到了堆栈中,这样已经为被打断的任务的恢复作好了准备。如果按照正常的中断流程,在退出中断时,被打断的任务应该恢复运行。现在,由于执行了中断级的任务切换,被打断的任务不能立刻恢复,而是被挂起,这就要求在执行任务调度前调整堆栈,使得被中断打断的任务处于随时可以被恢复的状态。 在中断处理程序中,当执行到OSIntExit()时,堆栈的情况和刚刚进入中断还是相同的,是能够随时恢复被打断的任务的情况。那么,只需要忽略OSIntExit()函数造成的堆栈变化。首先,是OSIntExit()函数本身的返回地址,长度为2个字;调用OS_ENTER_CRITICAL()压入堆栈的状态寄存器,长度为1个字;最后,是OSIntCtxSw()函数的返回地址,长度为2个字。那么在OSIntCtxSw()进行任务切换时,首先要把这5个字的堆栈的内容清除,才能保证被中断任务的正确恢复。该语句如下: ADDA #10,A7; 在完成了这些调整后,由于开关中断可能导致的内核调度死锁的可能已经不存在了。但是在这种情况下,另一个更加隐蔽的问题会出现,这个问题又是和使用的C编码器相关的。 问题出现在使用OSSemPend()函数时,一旦调用这个函数,CPU就会出现地址错误而进入异常处理,内核被终止。这个问题相当奇怪,因为,OSSemPend()函数完全是一个C语言写成的子函数,函数本身不应出现地址错误。通过阅读编译器编译出来的目标码发现了问题。EmPend()函数,发现这个函数没有任何局部变量。在进入OSSemPend()函数时,编译器不需要产生LINK指令来提供局部变量空间。所有的参数都是使用带偏移量的地址寄存器间接寻址方式直接从堆栈中取得,而且使用的地址寄存器就是A7寄存器。问题可能就在这里,OS_ENTER_CRITICAL()和OS_EXIT_CRITICAL()对堆栈的操作都会调整A7寄存器,这就会导致下面的语句在利用A7作寄存器间接寻址时发生错乱,出现地址错误。 这需要详细研究编译器的特性。我们使用的HIWARE的编译器实际上已经考虑到了这一点,当调用OS_ENTER_CRITICAL()或OS_EXIT_CRITICAL()函数更加了A7寄存器后,使用A7的地址寄存器间接寻址也会做出相应的调整,保证仍然能够得到函数调用时传递的变量。每出现一个OS_ENTER_CRITICAL(),接下来的A7寄存器间接寻址的偏移量就会加2;每出现一个OS_EXIT_CRITICAL(),接下来的A7寄存器间接寻址的偏移量就会减2。但是问题却依然存在,对OSSemPend()的调用会导致地址错误,这应该是一个更深层次的错误。 这个问题的解决方法是:定义一个局部变量,迫使编译器生成LINK指令,构造内部参数寻址指针A6,这样调用OS_ENTER_CRITICAL()或OS_EXIT_CRITICAL()时,更动的只是A7,而对参数寻址用的是A6,不受影响。 如果强迫编译器在调用函数时都加上LINK和UNLINK指令也可以解决这个问题,但是又会面临最先提到的编译器的优化选项问题。可以看出,编译器的特性对移植μC/OS-II是非常重要的,并且往往这些特性是相互制约的。 在移植和运行μC/OS-II的过程中,也许还会有新的问题出现,遇到问题时只要仔细分析,分析堆栈的使用、中断的影响,分析编译生成的代码,就可以实现μC/OS-II的稳定可靠运行。
|