本帖最后由 3265269760 于 2019-12-27 19:39 编辑
过去RKNN-Toolkit通过ONNX来完成MXNet和PyTorch等模型的支持,开发者需要先将模型转换为ONNX格式,再进一步转换为RKNN模型,这一过程较为繁琐,并且提高了引入问题的概率使得最终转换失败。
MXNet及PyTorch发展非常迅速,普及度快速提高, RKNN-Toolkit新版本将原生支持MXNet及PyTorch模型的转换,在端侧AI平台的框架和模型支持覆盖度上继续保持领先。
随着端侧设备数量的成倍增长,需要以更具可扩展性的方式部署端侧AI应用软件。Docker容器技术是业界广泛通行的解决这一挑战的有力工具。
RK1808平台系统将提供对Docker的支持,通过硬件抽象层,在容器中仍可调用NPU的强劲算力,经测试,容器中的AI模型推理性能几乎没有损失。 |