本帖最后由 AutochipsMCU 于 2020-9-18 13:17 编辑
直流无刷电机/永磁同步电机的控制实质就是在控制磁场方向。不管是用方波还是旋波,起控制本质都一样。只是控制方式差异。
本帖先拿方波控制的六步换向做分析,在此基础上后续再看对比看看SVPWM控制的差异和特点。
下面这张图是基于实际HALL方波换相关系波形整理出的:HALL状态、线反电动势、相反电动势以及MOS上下桥导通关系图。
说明:
1.Eab/Euv对应U-V端线反电动势,Ebc/Euw对应U-W端线反电动势,Ebc/Evw对应V-W端线反电动势。
2.示波器的探头是共地的,HALL信号可以用普通探头测量,相反电动势测量需要用隔离探头测量。 3.线电压是指任意两相的电压,相电压是指某相线与中心点的电压(星形连接)。相电压 = 线电压/2。
要点总结:
1.从波形图可知Eac过零点对应A相HALL信号改变,Eab反电动势的过零点对应B相HALL信号改变,Ebc过零点对应C相HALL信号改变。HALL信号每60电角度改变一次状态。
2.Eab相位超前Eac 60度,Eac相位超前Ebc 60度。从波形图可推出右边坐标图。Eb滞后Ebc 30度,Ea超前Eac 30度,-Ec滞后Eac 30度。 3.相反电动势与线反电动势相位相差30°。 4.线反电动势过零点为HALL信号改变点,及为六步方波换相点。相反电动势为正,则该相MOS管上桥导通,为负,则该相MOS管下桥导通。该相存在过零点则该相处于非导通状态。 由此可推出HALL状态与MOS管导通情况: HALL状态 | MOS导通状态 | 101 | U+,V- | 100 | U+,W- | 110 | V+,W- | 010 | V+,U- | 011 | W+,U- | 001 | W+,V- |
六步换向-两管导通合成空间电压矢量分析
六步换向同时只有2个MOS管导通,可基于下图来加强对两管导通合成空间电压矢量的理解。
U上,V下MOS导通:
1.上图是U上,V下MOS导通情况。 2.根据右手螺旋定则,左上图蓝色箭头为V相产生的磁场方向,黄色箭头为U相产生的磁场方向。红色箭头为合成后的磁场方向。此时合成后的磁场方向与转子(永磁体)磁场方向夹角为60度。 3.右上图为左上图对应的电压矢量合成图。Uu(t):U相正向导通,-Uv(t):V相负向导通。紫色为合成后的电压。 此时转子产生的磁场与定子产生的磁场相互作用,使得转子开始转动。 若按顺序控制即可控制电机正转或反转起来了。 U上,W下MOS导通:
V上,W下MOS导通:
V上,U下MOS导通:
W上,U下MOS导通:
W上,V下MOS导通:
把上述六状态的电压合成矢量规整到一起,如下图,我们可以看到,这个电压合成矢量在一个电周期内变化6次,每60度改变一次。这样的话会造成很大的转矩波动。如果我们希望电压合成矢量变化的更平滑一些,转矩波动小一些。怎么办呢?下一贴讲讲
|