Boost电路是一种开关直流升压电路,它能够使输出电压高于输入电压。在电子电路设计当中算是一种较为常见的电路设计方式。
本篇**针对新手,将为大家介绍Boost升压电路的工作原理。
首先我们需要知道:
电容阻碍电压变化,通高频,阻低频,通交流,阻直流;
电感阻碍电流变化,通低频,阻高频,通直流,阻交流;
假定开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。
下面要分充电和放电两个部分来说明这个电路:
充电过程
在充电过程中,开关闭合(三极管导通),开关(三极管)处用导线代替,这时,输入电压流过电感,二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。
放电过程
这是当开关断开(三极管截止)时的等效电路。
当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。
而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了,升压完毕。
说起来升压过程就是一个电感的能量传递过程,充电时,电感吸收能量,放电时电感放出能量。
如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。
boost电路升压过程
下面是一些补充:
AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上的)。
电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大)。
整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十。
开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键。
总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联。
最大电流有多大呢?简单点就算1A吧,其实不止。
由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A。
所以建议要用两只号称5A实际3A的管子并起来才能勉强对付。
现成的芯片都没有集成上述那么大电流的管子,所以建议用土电路就够对付洋电路了。
这些补充内容是教科书本上没有的知识,但是能够与教科书本上的内容进行对照并印证。
开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;
开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。
既然如此,提高转换效率就要从三个方面着手:
- 尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;
- 尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;
- 尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。
本篇**从充放电两个方面来对Boost电路的原理进行了讲解。
并在最后补充了一些书本上没有的知识,整体属于较为新手向的**,希望大家在阅读过本篇**之后,能对Boost电路的基本原理有进一步了解。
|