打印

[技术**]一文详解高速PCB的EMC设计原则

[复制链接]
10990|0
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
a2853095048|  楼主 | 2021-8-25 10:18 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

本文主要介绍了高速PCBEMC设计原则,首先介绍了PCB设计的EMC基础知识,其次阐述了PCB中EMC设计的重要性以及PCB中EMC设计相关项,最后详细的介绍了关于高速PCB的EMC设计的47项原则,具体的跟随小编一起来了解一下。


  PCB设计的EMC基础知识



  部分电磁兼容的基础知识,是优秀的PCB工程师需要了解或掌握的,主要如下: 电磁兼容、电磁场与电磁波、高速电路设计、信号完整性、电源完整性、数字电路、模拟电路、高频电路原理、开关电源等。


  PCB中EMC设计的重要性



  PCB是EMC技术中最值得探讨的部分。它不仅是设备工作频率最高的部分, 同时,也是电平最低、对电磁骚扰最为敏感的部分。PCB的EMC设计中,实际上已经包含了接地设计、去耦/旁路设计、串扰屏蔽等EMC设计知识。EMC设计良好的PCB,不但可以降低流过千扰共模电流时产生的压降,同时也是减小环路的重要手段, 因此,一个有着良好去耦与旁路设计PCB的设备相当于有一个健壮的“体格”。

  PCB板是电子产品最基本的部件,也是绝大部分电子元器件的载体。当一个产品的PCB板设计完成后,可以说其核心电路的骚扰和抗扰特性就基本已经确定下来了,要想再提高其电磁兼容特性,就只能通过接口电路的滤波和外壳的屏蔽来“围追堵截”了,这样不但大大增加了产品的后续成本,也增加了产品的复杂程度,降低了产品的可靠性。

  可以说一个好的PCB板可以解决大部分的电磁骚扰问题,只要在接口电路排板时适当增加瞬态抑制器件和滤波电路就可以同时解决大部分抗扰度和骚扰问题。

  在PCB布线中增强电磁兼容性不会给产品的最终完成带来附加费用。如果,在PCB板设计中,产品设计师往往只注重提高密度,减小占用空间,制作简单,或追求美观,布局均匀,忽视了线路布局对电磁兼容性的影响,使大量的信号辐射到空间形成骚扰。那么这个产品将导致大量的EMC问题。


  PCB中EMC设计相关项



  


  高速PCB的EMC设计原则



  原则1:PCB时钟频率超过5MHZ或信号上升时间小于5ns,一般需要使用多层板设计。

  原因:采用多层板设计信号回路面积能够得到很好的控制。

  原则2:对于多层板,关键布线层(时钟线、总线、接口信号线、射频线、复位信号线、片选信号线以及各种控制信号线等所在层)应与完整地平面相邻,优选两地平面之间。

  原因:关键信号线一般都是强辐射或极其敏感的信号线,靠近地平面布线能够使其信号回路面积减小,减小其辐射强度或提高抗干扰能力。

  原则3:对于单层板,关键信号线两侧应该包地处理;

  原因:关键信号两侧包地,一方面可以减小信号回路面积,另外防止信号线与其他信号线之间的串扰。

  原则4:对于双层板,关键信号线的投影平面上有大面积铺地,或者与单面板一样包地打孔处理。

  原因:与多层板关键信号靠近地平面相同

  原则5:多层板中,电源平面应相对于其相邻地平面内缩5H-20H(H为电源和地平面的距离)。

  原因:电源平面相对于其回流地平面内缩可以有效抑制边缘辐射问题。

  原则6:布线层的投影平面应该在其回流平面层区域内。

  原因:布线层如果不在回流平面层的投影区域内,会导致边缘辐射问题,并且导致信号回路面积增大,从而导致差模辐射增大。

  原则7:多层板中,单板TOP、BOTTOM层尽量无大于50MHZ的信号线,

  原因:最好将高频信号走在两个平面层之间,以抑制其对空间的辐射。

  原则8:对于板级工作频率大于50MHz的单板,若第二层与倒数第二层为布线层,则TOP和BOOTTOM层应铺接地铜箔。

  原因:最好将高频信号走在两个平面层之间,以抑制其对空间的辐射。

  原则9:多层板中,单板主工作电源平面(使用最广泛的电源平面)应与其地平面紧邻。

  原因:电源平面和地平面相邻可以有效地减小电源电路回路面积。

  原则10:在单层板中,电源走线附近必须有地线与其紧邻、平行走线。

  原因:减小电源电流回路面积。

  

原则11:在双层板中,电源走线附近必须有地线与其紧邻、平行走线。

  原因:减小电源电流回路面积。

  原则12:在分层设计时,尽量避免布线层相邻的设臵。如果无法避免布线层相邻,应该适当拉大两布线层之间的层间距,缩小布线层与其信号回路之间的层间距。

  原因:相邻布线层上的平行信号走线会导致信号串扰。

  原则13:相邻平面层应避免其投影平面重叠。

  原因:投影重叠时,层与层之间的耦合电容会导致各层之间的噪声互相耦合。

  原则14:PCB布局设计时,应充分遵守沿信号流向直线放臵的设计原则,尽量避免来回环绕。

  原因:避免信号直接耦合,影响信号质量。

  原则15:多种模块电路在同一PCB上放臵时,数字电路与模拟电路、高速与低速电路应分开布局。

  原因:避免数字电路、模拟电路、高速电路以及低速电路之间的互相干扰。

  原则16:当线路板上同时存在高、中、低速电路时,应该遵从高、中速电路远离接口。

  原因:避免高频电路噪声通过接口向外辐射。

  原则17:存在较大电流变化的单元电路或器件(如电源模块:的输入输出端、风扇及继电器)附近应放臵储能和高频滤波电容。

  原因:储能电容的存在可以减小大电流回路的回路面积。

  原则18:线路板电源输入口的滤波电路应靠近接口放臵,

  原因:避免已经经过了滤波的线路被再次耦合。

  原则19:在PCB板上,接口电路的滤波、防护以及隔离器件应该靠近接口放臵。

  原因:可以有效的实现防护、滤波和隔离的效果。

  原则20:如果接口处既有滤波又有防护电路,应该遵从先防护后滤波的原则。

  

  原因:防护电路用来进行外来过压和过流抑制,如果将防护电路放臵在滤波电路之后,滤波电路会被过压和过流损坏。

  原则21:布局时要保证滤波电路(滤波器)、隔离以及防护电路的输入输出线不要相互耦合。

  原因:上述电路的输入输出走线相互耦合时会削弱滤波、隔离或防护效果。

  原则22:单板上如果设计了接口“干净地”,则滤波、隔离器件应放臵在“干净地”和工作地之间的隔离带上。

  原因:避免滤波或隔离器件通过平面层互相耦合,削弱效果。

  原则23:“干净地”上,除了滤波和防护器件之外,不能放臵任何其他器件,原因:“干净地”设计的目的是保证接口辐射最小,并且“干净地”极易被外来干扰耦合,所以“干净地”上不要有其他无关的电路和器件。

  原则24:晶体、晶振、继电器、开关电源等强辐射器件远离单板接口连接器至少1000mil。原因:将干扰会直接向外辐射或在外出电缆上耦合出电流来向外辐射。

  原则25:敏感电路或器件(如复位电路、:WATCHDOG电路等)远离单板各边缘特别是单板接口侧边缘至少1000mil。

  原因:类似于单板接口等地方是最容易被外来干扰(如静电)耦合的地方,而像复位电路、看门狗电路等敏感电路极易引起系统的误操作。

  原则26:时钟、总线、射频线等关键信号走线和:其他同层平行走线应满足3W原则。

  原因:避免信号之间的串扰。

  原则27:电流≥1A的电源所用的表贴保险丝、磁珠、电感、钽电容的焊盘应不不少于两个过孔接到平面层。

  原因:减小过孔等效阻抗。

  原则28:差分信号线应同层、等长、并行走线,保持阻抗一:致,差分线间无其它走线。

  原因:保证差分线对的共模阻抗相等,提高其抗干扰能力。

  原则29:关键信号走线一定不能跨分割区走线(包括过孔、焊盘导致的参考平面间隙)。

  原因:跨分割区走线会导致信号回路面积的增大。

  原则30:信号线跨其回流平面分割地情况不可避免时,建议在信号跨分割附近采用桥接电容方式处理,电容取值为1nF。

  原因:信号跨分割时,常常会导致其回路面积增大,采用桥接地方式是人为的为其设臵信号回路。

  原则31:单板上的滤波器(滤波电路)下方不要有其他无关信号走线。

  原因:分布电容会削弱滤波器的滤波效果。

  

原则32:滤波器(滤波电路)的输入、输出信号线不能相互平行、交叉走线。

  原因:避免滤波前后的走线直接噪声耦合。

  原则33:关键信号线距参考平面边沿≥3H(H为线距离参考平面的高度)。

  原因:抑制边缘辐射效应。

  原则34:对于金属外壳接地元件,应在其投影区的顶层上铺接地铜皮。

  原因:通过金属外壳和接地铜皮之间的分布电容来抑制其对外辐射和提高抗扰度。

  原则35:在单层板或双层板中,布线时应该注意“回路面积最小化”设计。

  原因:回路面积越小、回路对外辐射越小,并且抗干扰能力越强。

  原则36:信号线(特别是关键信号线)换层时,应在其换层过孔附近设计地过孔。

  原因:可以减小信号回路面积。

  原则37:时钟线、总线、射频线等:强辐射信号线远离接口外出信号线。

  原因:避免强辐射信号线上的干扰耦合到外出信号线上,向外辐射。

  原则38:敏感信号线如复位信号线、片选信号线、系统控制信号等远离接口外出信号线。

  原因:接口外出信号线常常带进外来干扰,耦合到敏感信号线时会导致系统误操作。

  原则39:在单面板和双面板中,滤波电容的走线应先经滤波电容滤波,再到器件管脚。

  原因:使电源电压先经过滤波再给IC供电,并且IC回馈给电源的噪声也会被电容先滤掉。

  原则40:在单面板或双面板中,如果电源线走线很长,应每隔3000mil对地加去耦合电容,电容取值为10uF+1000pF。

  原因:滤除电源线上地高频噪声。

  

  原则41:滤波电容的接地线和接电源线应该尽可能粗、短。

  原因:等效串联电感会降低电容的谐振频率,削弱其高频滤波效果。

  原则42:为IC滤波的各滤波电容应尽可能靠近芯片的供电管脚放臵。

  原因:电容离管脚越近,高频回路面积越小,从而辐射越小。

  原则43:对于始端串联匹配电阻,应靠近其信号输出端放臵。

  原因:始端串联匹配电阻的设计目的是为了芯片输出端的输出阻抗与串联电阻的阻抗相加等于走线的特性阻抗,匹配电阻放在末端,无法满足上述等式。

  原则44:PCB走线不能有直角或锐角走线。

  原因:直角走线导致阻抗不连续,导致信号发射,从而产生振铃或过冲,形成强烈的EMI辐射。

  原则45:尽可能避免相邻布线层的层设臵,无法避免时,尽量使两布线层中的走线相互垂直或平行走线长度小于1000mil。

  原因:减小平行走线之间的串扰。

  原则46:如果单板有内部信号走线层,则时钟等关键信号线布在内层(优先考虑优选布线层)。

  原因:将关键信号布在内部走线层可以起到屏蔽作用。

  原则47:时钟线两侧建议包地线,包地线每隔3000mil打接地过孔。

  原因:保证包地线上各点电位相等。




使用特权

评论回复

相关帖子

发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

4

主题

4

帖子

0

粉丝