/**************************************************************************//**
* [url=home.php?mod=space&uid=288409]@file[/url] main.c
* [url=home.php?mod=space&uid=895143]@version[/url] V3.00
* [url=home.php?mod=space&uid=247401]@brief[/url] Demonstrate how to trigger ADC by PWM.
*
* SPDX-License-Identifier: Apache-2.0
* [url=home.php?mod=space&uid=17282]@CopyRight[/url] (C) 2018 Nuvoton Technology Corp. All rights reserved.
******************************************************************************/
#include <stdio.h>
#include "NuMicro.h"
/*---------------------------------------------------------------------------------------------------------*/
/* Define global variables and constants */
/*---------------------------------------------------------------------------------------------------------*/
volatile uint32_t g_u32AdcIntFlag, g_u32COVNUMFlag = 0;
void SYS_Init(void)
{
/* Unlock protected registers */
SYS_UnlockReg();
/* Enable HIRC */
CLK->PWRCTL |= CLK_PWRCTL_HIRCEN_Msk;
/* Waiting for HIRC clock ready */
while((CLK->STATUS & CLK_STATUS_HIRCSTB_Msk) != CLK_STATUS_HIRCSTB_Msk);
/* Switch HCLK clock source to HIRC */
CLK->CLKSEL0 = (CLK->CLKSEL0 & ~CLK_CLKSEL0_HCLKSEL_Msk) | CLK_CLKSEL0_HCLKSEL_HIRC;
CLK->CLKDIV0 = (CLK->CLKDIV0 & ~CLK_CLKDIV0_HCLKDIV_Msk) | CLK_CLKDIV0_HCLK(1);
/* Set both PCLK0 and PCLK1 as HCLK/2 */
CLK->PCLKDIV = (CLK_PCLKDIV_APB0DIV_DIV2 | CLK_PCLKDIV_APB1DIV_DIV2);
/* Switch UART0 clock source to HIRC */
CLK->CLKSEL1 = (CLK->CLKSEL1 & ~CLK_CLKSEL1_UART0SEL_Msk) | CLK_CLKSEL1_UART0SEL_HIRC;
CLK->CLKDIV0 = (CLK->CLKDIV0 & ~CLK_CLKDIV0_UART0DIV_Msk) | CLK_CLKDIV0_UART0(1);
/* ADC clock source is PCLK1, set divider to 1 */
CLK->CLKSEL2 = (CLK->CLKSEL2 & ~CLK_CLKSEL2_ADCSEL_Msk) | CLK_CLKSEL2_ADCSEL_PCLK1;
CLK->CLKDIV0 = (CLK->CLKDIV0 & ~CLK_CLKDIV0_ADCDIV_Msk) | CLK_CLKDIV0_ADC(1);
/* Enable UART0 and ADC peripheral clock */
CLK->APBCLK0 |= (CLK_APBCLK0_UART0CKEN_Msk | CLK_APBCLK0_ADCCKEN_Msk);
/* Enable PWM0 module clock */
CLK->APBCLK1 |= CLK_APBCLK1_PWM0CKEN_Msk;
/* Select PWM0 module clock source as PCLK0 */
CLK->CLKSEL2 = (CLK->CLKSEL2 & ~CLK_CLKSEL2_PWM0SEL_Msk) | CLK_CLKSEL2_PWM0SEL_PCLK0;
/* Update System Core Clock */
/* User can use SystemCoreClockUpdate() to calculate PllClock, SystemCoreClock and CycylesPerUs automatically. */
SystemCoreClockUpdate();
/*----------------------------------------------------------------------*/
/* Init I/O Multi-function */
/*----------------------------------------------------------------------*/
/* Set GPB multi-function pins for UART0 RXD and TXD */
SYS->GPB_MFPH = (SYS->GPB_MFPH & ~(SYS_GPB_MFPH_PB12MFP_Msk | SYS_GPB_MFPH_PB13MFP_Msk)) |
(SYS_GPB_MFPH_PB12MFP_UART0_RXD | SYS_GPB_MFPH_PB13MFP_UART0_TXD);
/* Set PB.2 ~ PB.3 to input mode */
PB->MODE &= ~(GPIO_MODE_MODE2_Msk | GPIO_MODE_MODE3_Msk);
/* Configure the GPB2 - GPB3 ADC analog input pins. */
SYS->GPB_MFPL = (SYS->GPB_MFPL & ~(SYS_GPB_MFPL_PB2MFP_Msk | SYS_GPB_MFPL_PB3MFP_Msk)) |
(SYS_GPB_MFPL_PB2MFP_ADC0_CH2 | SYS_GPB_MFPL_PB3MFP_ADC0_CH3);
/* Disable the GPB2 digital input path to avoid the leakage current. */
PB->DINOFF |= ((BIT2|BIT3)<<GPIO_DINOFF_DINOFF0_Pos);
/* Set PA multi-function pins for PWM0 Channel 0 */
SYS->GPA_MFPL = (SYS->GPA_MFPL & (~SYS_GPA_MFPL_PA0MFP_Msk)) |
(SYS_GPA_MFPL_PA5MFP_PWM0_CH0);
/* Lock protected registers */
SYS_LockReg();
}
/*----------------------------------------------------------------------*/
/* Init UART0 */
/*----------------------------------------------------------------------*/
void UART0_Init(void)
{
/* Reset UART0 */
SYS->IPRST1 |= SYS_IPRST1_UART0RST_Msk;
SYS->IPRST1 &= ~SYS_IPRST1_UART0RST_Msk;
/* Configure UART0 and set UART0 baud rate */
UART0->BAUD = UART_BAUD_MODE2 | UART_BAUD_MODE2_DIVIDER(__HIRC, 115200);
UART0->LINE = UART_WORD_LEN_8 | UART_PARITY_NONE | UART_STOP_BIT_1;
}
void PWM0_Init()
{
/* Set PWM0 timer clock prescaler */
*(__IO uint32_t *) (&(PWM0->CLKPSC[0])) = 0;
/* Set up counter type */
PWM0->CTL1 &= ~PWM_CTL1_CNTTYPE0_Msk;
/* Set PWM0 timer duty */
PWM0->CMPDAT[0] = 1000;
/* Set PWM0 timer period */
PWM0->PERIOD[0] = 2000;
/* PWM period point trigger ADC enable */
PWM0->ADCTS0 = (PWM0->ADCTS0 & ~(PWM_ADCTS0_TRGSEL0_Msk)) |
(PWM_ADCTS0_TRGEN0_Msk | PWM_TRIGGER_ADC_EVEN_PERIOD_POINT);
/* Set output level at zero, compare up, period(center) and compare down of specified channel */
{
int i;
for(i = 0; i < 6; i++)
{
if((BIT0) & (1 << i))
{
PWM0->WGCTL0 = ((PWM0->WGCTL0 & ~(3UL << (i << 1))) | (PWM_OUTPUT_HIGH << (i << 1)));
PWM0->WGCTL0 = ((PWM0->WGCTL0 & ~(3UL << (PWM_WGCTL0_PRDPCTL0_Pos + (i << 1)))) | (PWM_OUTPUT_NOTHING << (PWM_WGCTL0_PRDPCTL0_Pos + (i << 1))));
PWM0->WGCTL1 = ((PWM0->WGCTL1 & ~(3UL << (i << 1))) | (PWM_OUTPUT_LOW << (i << 1)));
PWM0->WGCTL1 = ((PWM0->WGCTL1 & ~(3UL << (PWM_WGCTL1_CMPDCTL0_Pos + (i << 1)))) | (PWM_OUTPUT_NOTHING << (PWM_WGCTL1_CMPDCTL0_Pos + (i << 1))));
}
}
}
/* Enable output of PWM0 channel 0 */
PWM0->POEN |= BIT0;
}
void ADC_FunctionTest()
{
uint8_t u8Option;
int32_t i32ConversionData[6] = {0};
printf("\n");
printf("+----------------------------------------------------------------------+\n");
printf("| ADC trigger by PWM test |\n");
printf("+----------------------------------------------------------------------+\n");
printf("\nIn this test, software will get 6 conversion result from the specified channel.\n");
/* Enable ADC converter */
ADC->ADCR |= ADC_ADCR_ADEN_Msk;
/* Do calibration for ADC to decrease the effect of electrical random noise. */
ADC->ADCALSTSR |= ADC_ADCALSTSR_CALIF_Msk; /* Clear Calibration Finish Interrupt Flag */
ADC->ADCALR |= ADC_ADCALR_CALEN_Msk; /* Enable Calibration function */
ADC_START_CONV(ADC); /* Start to calibration */
while((ADC->ADCALSTSR & ADC_ADCALSTSR_CALIF_Msk) != ADC_ADCALSTSR_CALIF_Msk); /* Wait calibration finish */
while(1)
{
printf("Select input mode:\n");
printf(" [1] Single end input (channel 2 only)\n");
printf(" [2] Differential input (channel pair 1 only)\n");
printf(" Other keys: exit single mode test\n");
u8Option = getchar();
if(u8Option == '1')
{
/* Set input mode as single-end, Single mode, and select channel 2 */
/* Configure the sample module and enable PWM0 trigger source */
ADC->ADCR = (ADC->ADCR & ~(ADC_ADCR_DIFFEN_Msk | ADC_ADCR_ADMD_Msk | ADC_ADCR_TRGS_Msk | ADC_ADCR_TRGCOND_Msk | ADC_ADCR_TRGEN_Msk)) |
(ADC_ADCR_DIFFEN_SINGLE_END | ADC_ADCR_ADMD_SINGLE | ADC_ADCR_TRGS_PWM | ADC_ADCR_TRGEN_Msk | ADC_ADCR_ADIE_Msk);
ADC->ADCHER = (ADC->ADCHER & ~ADC_ADCHER_CHEN_Msk) | (BIT2);
/* Clear the A/D interrupt flag for safe */
ADC->ADSR0 = ADC_ADF_INT;
/* Enable the sample module interrupt */
NVIC_EnableIRQ(ADC_IRQn);
printf("Conversion result of channel 2:\n");
/* Reset the ADC indicator and enable PWM0 channel 0 counter */
g_u32AdcIntFlag = 0;
g_u32COVNUMFlag = 0;
PWM0->CNTEN |= PWM_CH_0_MASK; /* PWM0 channel 0 counter start running. */
while(1)
{
/* Wait ADC interrupt (g_u32AdcIntFlag will be set at IRQ_Handler function) */
while(g_u32AdcIntFlag == 0);
/* Reset the ADC interrupt indicator */
g_u32AdcIntFlag = 0;
/* Get the conversion result of the ADC channel 2 */
i32ConversionData[g_u32COVNUMFlag - 1] = (ADC->ADDR[2] & ADC_ADDR_RSLT_Msk);
if(g_u32COVNUMFlag >= 6)
break;
}
/* Disable PWM0 channel 0 counter */
PWM0->CNTEN &= ~BIT0; /* PWM0 counter stop running. */
for(g_u32COVNUMFlag = 0; (g_u32COVNUMFlag) < 6; g_u32COVNUMFlag++)
printf(" 0x%X (%d)\n", i32ConversionData[g_u32COVNUMFlag], i32ConversionData[g_u32COVNUMFlag]);
}
else if(u8Option == '2')
{
/* Set input mode as differential, Single mode, and select channel 2 */
/* Configure the sample module and enable PWM0 trigger source */
ADC->ADCR = (ADC->ADCR & ~(ADC_ADCR_DIFFEN_Msk | ADC_ADCR_ADMD_Msk | ADC_ADCR_TRGS_Msk | ADC_ADCR_TRGCOND_Msk | ADC_ADCR_TRGEN_Msk)) |
(ADC_ADCR_DIFFEN_DIFFERENTIAL | ADC_ADCR_ADMD_SINGLE | ADC_ADCR_TRGS_PWM | ADC_ADCR_TRGEN_Msk | ADC_ADCR_ADIE_Msk);
ADC->ADCHER = (ADC->ADCHER & ~ADC_ADCHER_CHEN_Msk) | (BIT2);
/* Clear the A/D interrupt flag for safe */
ADC->ADSR0 = ADC_ADF_INT;
/* Enable the sample module interrupt */
NVIC_EnableIRQ(ADC_IRQn);
printf("Conversion result of channel 2:\n");
/* Reset the ADC indicator and enable PWM0 channel 0 counter */
g_u32AdcIntFlag = 0;
g_u32COVNUMFlag = 0;
PWM0->CNTEN |= PWM_CH_0_MASK; /* PWM0 channel 0 counter start running. */
while(1)
{
/* Wait ADC interrupt (g_u32AdcIntFlag will be set at IRQ_Handler function) */
while(g_u32AdcIntFlag == 0);
/* Reset the ADC interrupt indicator */
g_u32AdcIntFlag = 0;
/* Get the conversion result of the ADC channel 2 */
i32ConversionData[g_u32COVNUMFlag - 1] = (ADC->ADDR[2] & ADC_ADDR_RSLT_Msk);
if(g_u32COVNUMFlag >= 6)
break;
}
/* Disable PWM0 channel 0 counter */
PWM0->CNTEN &= ~BIT0; /* PWM0 counter stop running. */
for(g_u32COVNUMFlag = 0; (g_u32COVNUMFlag) < 6; g_u32COVNUMFlag++)
printf(" 0x%X (%d)\n", i32ConversionData[g_u32COVNUMFlag], i32ConversionData[g_u32COVNUMFlag]);
}
else
return ;
}
}
void ADC_IRQHandler(void)
{
ADC->ADSR0 = ADC_ADF_INT; /* Clear the A/D interrupt flag */
g_u32AdcIntFlag = 1;
g_u32COVNUMFlag++;
}
int32_t main(void)
{
/* Init System, IP clock and multi-function I/O. */
SYS_Init();
/* Init UART0 for printf */
UART0_Init();
/* Init PWM for ADC */
PWM0_Init();
printf("\nSystem clock rate: %d Hz", SystemCoreClock);
/* ADC function test */
ADC_FunctionTest();
/* Disable ADC IP clock */
CLK->APBCLK0 &= ~(CLK_APBCLK0_ADCCKEN_Msk);
/* Disable PWM0 IP clock */
CLK->APBCLK1 &= ~(CLK_APBCLK1_PWM0CKEN_Msk);
/* Disable External Interrupt */
NVIC_DisableIRQ(ADC_IRQn);
printf("Exit ADC sample code\n");
while(1);
}
|