三、 PN结的伏安特性
3.1 PN结的伏安曲线
基于此,能够得到PN结的伏安特性曲线,反向电压时电流较小,当反向电压过大时PN结被击穿,因此出现骤升的电流。正向电压较小时,电流也较小,随着电压的逐渐升高,电流呈指数上升。
3.2 PN结的电流方程 电流方程为一个指数方程,
其中,Ut是一个温度相关的量,将温度转为电压,当温度为室温时,其值为26mV。U为PN结的电压。Si做基材的PN结,在U为0.6~0.7V时,PN结导通。Is为反向饱和电流。
3.3 PN结的正向特性 存在死区,死区的大小由基材决定。Si做基材时,死区为0.6V~0.7V。Ge做基材时,死区为0.2V~0.3V。
3.4 PN结的反向特性 反向电流Is,Ge做基材时,反向电流大于Si做基材时的反向电流。
反向击穿,当反向电压到达一定幅值,即反向击穿PN结,使得电流急剧上升。
(1)雪崩击穿
PN结掺杂浓度低时,PN结宽度在外加电场作用加不断加长,形成一个类似于粒子加速器的区域,自动电子撞击共价键,使得更多自由电子的出现。
温度越高,雪崩击穿需要的电压越高。
(2)齐纳击穿
PN结掺杂浓度高时,宽度虽然不大,但是电场强度较大,直接从共价键中将价电子拉出。
温度越高,齐纳击穿需要的电压越低。(温度越高,价电子越容易拉出来)
反向击穿后,PN结电流导致了其温度升高,导致PN结烧毁。当反向击穿时温度不高,并马上恢复正常状态时,PN结还能使用。
3.5 掺杂浓度与反向击穿电压的影响 掺杂浓度越低,反向击穿电压越高;掺杂浓度越高,反向击穿电压越低。通过不同掺杂浓度,控制器反向击穿电压。
四、PN结的电容效应 4.1 电容 电容反应电量与电压的关系,当两端的电压发生变化时,其电荷量也发生变化。
在相同的电压范围内,电容值的不同,代表着,电容能够储存的电荷量不同。
4.2 势垒电容 (反向电压) 势垒电容不是线性的,随着反向电压的增加,其P区N区的电荷量逐渐增大,与电容的概念相同。
4.3 扩散电容 (正向电压) 当施加的正向电压发生变化时,其两端的电荷量也会随之发生改变,这种性质称为电容。由非平衡少子和电压之间的关系构成的。
如图所示,2为在1的基础上增大电压,P区少子 浓度增大,3为在1的基础上减小电压,P区少子浓度减小。因此在电压升高时,电荷量增大,电压降低时,电荷量减少。这就是扩散电容。
原文链接:https://blog.csdn.net/qq_41305281/article/details/125381226
|