PID及其衍生算法是应用最广泛的算法之一,是当之无愧的万能算法,如果能够熟练掌握PID算法的设计与实现过程,对于一般的研发人员来讲,应该是足够应对一般研发问题了,而难能可贵的是,在我所接触的控制算法当中,PID控制算法又是最简单,最能体现反馈思想的控制算法,可谓经典中的经典。经典的未必是复杂的,经典的东西常常是简单的,而且是最简单的,想想牛顿的力学三大定律吧,想想爱因斯坦的质能方程吧,何等的简单!简单的不是原始的,简单的也不是落后的,简单到了美的程度。先看看PID算法的一般形式: PID的流程简单到了不能再简单的程度,通过误差信号控制被控量,而控制器本身就是比例、积分、微分三个环节的加和。这里我们规定(在t时刻): 1.输入量为rin(t); 2.输出量为rout(t); 3.偏差量为err(t)=rin(t)-rout(t); pid的控制规律为 理解一下这个公式,主要从下面几个问题着手,为了便于理解,把控制环境具体一下: 1.规定这个流程是用来为直流电机调速的; 2.输入量rin(t)为电机转速预定值; 3.输出量rout(t)为电机转速实际值; 4.执行器为直流电机; 5.传感器为光电码盘,假设码盘为10线; 6.直流电机采用PWM调速 转速用单位 转/min 表示; 不难看出以下结论: 1.输入量rin(t)为电机转速预定值(转/min); 2. 输出量rout(t)为电机转速实际值(转/min); 3.偏差量为预定值和实际值之差(转/min); 那么以下几个问题需要弄清楚: 1.通过PID环节之后的U(t)是什么值呢? 2.控制执行器(直流电机)转动转速应该为电压值(也就是PWM占空比)。 3.那么U(t)与PWM之间存在怎样的联系呢? 下一篇说明连续系统的离散化问题。并根据离散化后的特点讲述位置型PID和增量型PID的用法和C语言实现过程 PID控制算法的C语言实现二 PID算法的离散化上一节中,我论述了PID算法的基本形式,并对其控制过程的实现有了一个简要的说明,通过上一节的总结,基本已经可以明白PID控制的过程。这一节中先继续上一节内容补充说明一下。 1.说明一下反馈控制的原理,通过上一节的框图不难看出,PID控制其实是对偏差的控制过程; 2.如果偏差为0,则比例环节不起作用,只有存在偏差时,比例环节才起作用。 3.积分环节主要是用来消除静差,所谓静差,就是系统稳定后输出值和设定值之间的差值,积分环节实际上就是偏差累计的过程,把累计的误差加到原有系统上以抵消系统造成的静差。 4.而微分信号则反应了偏差信号的变化规律,或者说是变化趋势,根据偏差信号的变化趋势来进行超前调节,从而增加了系统的快速性。 好了,关于PID的基本说明就补充到这里,下面将对PID连续系统离散化,从而方便在处理器上实现。下面把连续状态的公式再贴一下: 假设采样间隔为T,则在第K T时刻: 偏差err(K)=rin(K)-rout(K); 积分环节用加和的形式表示,即err(K)+err(K+1)+……; 微分环节用斜率的形式表示,即[err(K)-err(K-1)]/T; 从而形成如下PID离散表示形式: 则u(K)可表示成为: 至于说Kp、Ki、Kd三个参数的具体表达式,我想可以轻松的推出了,这里节省时间,不再详细表示了。 其实到这里为止,PID的基本离散表示形式已经出来了。目前的这种表述形式属于位置型PID,另外一种表述方式为增量式PID,由U上述表达式可以轻易得到: 那么: 这就是离散化PID的增量式表示方式,由公式可以看出,增量式的表达结果和最近三次的偏差有关,这样就大大提高了系统的稳定性。需要注意的是最终的输出结果应该为 u(K)+增量调节值; PID的离散化过程基本思路就是这样, 从而实现微控制器的控制作用。
|