不同的温度传感自有其优缺点,一般来说,热电偶是一种相对廉价的范围广泛的温度传感。它的小尺寸、极快速度以及其较低的输出阻抗是相对具有优势的特性,而且它能够测量极端温度,这是很多温度传感的测量范围不能覆盖的。响应快是因为热电偶的热容量很低,尤其在感应接合点裸露时,热电偶可在数百毫秒内对温度变化做出响应。同时热电偶固有的电压输出也消除了对激励电源的需要,这也大大降低了器件本身的自发热。
另一方面,热电偶的相比其他温度传感的劣势也不少,低电平输出、灵敏度差和非线性是大家选择热电偶时会额外关注的几点。低电平输出意味着需要稳定的信号调节组件,否则整个测温系统的精度难以达到预期。热电偶系统中组件的连接必须要非常小心,意外的热电偶效应(例如,焊料和铜产生3μV/℃热电偶)会使整个“端到端”系统的精确度很难达到理想的标准精度。
即便信号调节得很好,没有引入额外的误差,由于热电偶本身的金属特性,内部的不精确性也是无法消除的。一般来说,热电偶测量精度只能达到参考接合点温度的测量精度,也就是1℃到2℃左右。而且当热电偶测量毫伏级信号变化时,也很容易受到杂散电场和磁场产生的噪声影响。
热电偶的冷端补偿
冷端补偿,谈及热电偶时不可能绕开的一点,热电偶想要达到理想的精度就必须采用冷端补偿为其提供误差修正。只有知道准确测得冷端温度,才能测量出热电偶测量端温度并提高标装置的准确度。
使用恒温法做冷端补偿虽然足够精确,但只适合实验室测量,在大多数实际应用中将热电偶的参考接合点放置在冰浴中这种操作多少有点不切实际。因此在实际应用中大多会选择冷接合点补偿技术来做冷端补偿。这种方法需要一个额外的温度传感器来测量参考点温度,通常会选择RTD、NTC或者集成的温度独立IC。不同的传感器选择都会有所限制,比如使用RTD测量会很精准但在尺寸和成本上偏高,使用NTC响应非常快但是容易漂移。
还可以使用控制冷却补偿器的办法来以电子模拟冰浴,冷结补偿器电路并不保持一个稳定的温度,而是跟踪冷结。这种跟踪与保持冷结恒温具有相同的效果,但实现起来更简单,它在预期的冷结温度范围内可以以斜率表示热电偶的输出。
这种冷结补偿器IC需要有较低的供电电流来将自加热最小化,确保自身可以与冷结处于等温下运行。冷结补偿器内特殊的曲率校正电路用于匹配所有热电偶输出中出现的“弯曲部分”,从而在较宽的温度范围内保持准确的冷结点补偿。
|