本帖最后由 1988ChenSir 于 2023-5-29 16:04 编辑
使用 FreeRTOS 和 HAL 库的 STM32 例程,多个任务例程使用 FreeRTOS 和 HAL 库的 STM32 例程,它包含多个任务来控制 LED 灯的闪烁、串口数据发送和按键检测:
#include "main.h"
#include "cmsis_os.h"
#include <stdio.h>
// 定义全局变量
TIM_HandleTypeDef htim2;
UART_HandleTypeDef huart2;
osThreadId defaultTaskHandle, uartTaskHandle, buttonTaskHandle;
uint8_t uart_buf[16];
osSemaphoreId uart_sem;
// 声明函数原型
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
static void MX_USART2_UART_Init(void);
void StartDefaultTask(void const * argument);
void UartSendTask(void const * argument);
void ButtonCheckTask(void const * argument);
int main(void)
{
// 初始化 HAL 库和 RTOS 内核
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_TIM2_Init();
MX_USART2_UART_Init();
// 创建默认任务
osThreadDef(defaultTask, StartDefaultTask, osPriorityNormal, 0, 128);
defaultTaskHandle = osThreadCreate(osThread(defaultTask));
// 创建串口发送任务
osThreadDef(uartTask, UartSendTask, osPriorityNormal, 0, 128);
uartTaskHandle = osThreadCreate(osThread(uartTask));
// 创建按键检测任务
osThreadDef(buttonTask, ButtonCheckTask, osPriorityNormal, 0, 128);
buttonTaskHandle = osThreadCreate(osThread(buttonTask));
// 创建信号量
osSemaphoreDef(uartSem);
uart_sem = osSemaphoreCreate(osSemaphore(uartSem), 1);
// 启动 RTOS 内核
osKernelStart();
while (1) {}
}
// 默认任务的入口函数
void StartDefaultTask(void const * argument)
{
for (;;) {
HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin); // 切换 LED 状态
osDelay(500); // 延迟 500ms
}
}
// 串口发送任务的入口函数
void UartSendTask(void const * argument)
{
uint32_t tick_count;
sprintf((char *)uart_buf, "Hello, world!\r\n");
for (;;) {
osSemaphoreWait(uart_sem, osWaitForever); // 等待信号量
tick_count = osKernelSysTick();
HAL_UART_Transmit(&huart2, uart_buf, strlen((char*)uart_buf), 1000);
tick_count = osKernelSysTick() - tick_count;
printf("UART send time: %ld\r\n", tick_count); // 打印发送时间
}
}
// 按键检测任务的入口函数
void ButtonCheckTask(void const * argument)
{
GPIO_PinState button_state = GPIO_PIN_SET;
GPIO_PinState last_state = GPIO_PIN_SET;
for (;;) {
button_state = HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin);
if (button_state != last_state) {
sprintf((char *)uart_buf, "Button state: %d\r\n", button_state);
osSemaphoreRelease(uart_sem); // 发送数据
last_state = button_state;
}
osDelay(10); // 延迟一段时间
}
}
// 定时器中断回调函数
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if (htim->Instance == TIM2) {
HAL_IncTick(); // 增加 HAL 的滴答计数器
osSystickHandler(); // 调用 RTOS 的 SysTick 处理函数
}
}
// 配置系统时钟源和频率
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
// 配置 GPIO 和 TIM2
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
GPIO_InitStruct.Pin = LED_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_GPIO_Port, &GPIO_InitStruct);
GPIO_InitStruct.Pin = BUTTON_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(BUTTON_GPIO_Port, &GPIO_InitStruct);
}
static void MX_TIM2_Init(void)
{
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
__HAL_RCC_TIM2_CLK_ENABLE();
htim2.Instance = TIM2;
htim2.Init.Prescaler = 7999;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 999;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
// 错误处理函数
void Error_Handler(void)
{
while(1) {}
}
|