打印
[技术问答]

5V 与3.3V电平转换的几种电路设计方法

[复制链接]
711|3
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
linfelix|  楼主 | 2023-8-26 19:54 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
  • 利用漏极开路进行电平转换
利用OC或者OD门电路,这样集电极或者漏极都可以通过一个电阻上拉到一个新的VCC,其基极或者栅极就可以连接另外一个VCC,这样也就实现了,3.3V控制5V,12V的电平信号输出。注意这里需要选择好上电阻阻值,还要考虑MCUIO的驱动能力。这类电路大部分运用在输出电路上的电平转换电路。
比如LM393,LM293比较器芯片,输出漏极开路,需要上拉。
2. 利用特定电平转换芯片
利用特定的电平转换芯片,将3.3V和5V进行转换。例如74LVC4245A,74ALVC164245这两款芯片用的比较多。
3. 利用光耦进行电平转换
光耦合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。以光为媒介把输入端信号耦合到输出端的光电耦合器,由于它具有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,在数字电路上获得广泛的应用。光耦不仅有单向光耦还是有双休光耦。常见单向光耦



1.一般的单向光耦输入端正负极不能接反的(下图是单向的);
2.双向输入光耦端不分正负极,因为它并联了2个不同向的二极管,这样不管正负极怎么接,都会有其中的一个发光,信号可以传递。

3. 利用MOSFET构建电平转换电路


可以通过将电压不同的器件通过连接到电源电压线的上拉电阻连接到相同的总线,尽管这是最简单的解决方法,低电压的器件必须能容忍5V ,使它们的生产更昂贵。但是,通过使用双向电平转换器可以将电源电压和逻辑电平不同的两部分I2C 总线连接起来。配置入图所示。左边的“低电压”部分有上拉电阻而且器件连接到3.3V 的电源电压,右边的“高电平”部分有上拉电阻,器件连接到5V 电源电压。两部分的器件都有与逻辑输入电平相关的电源电压和开漏输出配置的I/O。
每条总线线路的电平转换器是相同的,而且由一个分立的N通道增强型MOS-FET 管、串行数据线SDA的TR1 和串行时钟线SCL 的TR2 组成。门极(g) 要连接到低电源电压VDD1, 源极(s) 连接到“低电压”部分的总线线路,而漏极(d) 则连接到高电压部分的总线线路。很多MOS-FET 管的基底与它的源极内部连接,如果内部没有连接,就必须建立一个外部连接。每个MOS-FET 管在漏极和基底之间都有一个集成的二极管(n-p 结)。
电平转换器的操作

在电平转换器的操作中要考虑下面的三种状态:
1 没有器件下拉总线线路。“低电压”部分的总线线路通过上拉电阻Rp 上拉至3.3V。 MOS-FET 管的门极和源极都是3.3V, 所以它的VGS 低于阀值电压,MOS-FET 管不导通。这就允许“高电压”部分的总线线路通过它的上拉电阻Rp 拉到5V。 此时两部分的总线线路都是高电平,只是电压电平不同。
2 一个3.3V 器件下拉总线线路到低电平。MOS-FET 管的源极也变成低电平,而门极是3.3V。 VGS上升高于阀值,MOS-FET 管开始导通。然后“高电压”部分的总线线路通过导通的MOS-FET管被3.3V 器件下拉到低电平。此时,两部分的总线线路都是低电平,而且电压电平相同。
3 一个5V 的器件下拉总线线路到低电平。MOS-FET 管的漏极基底二极管“低电压”部分被下拉直到VGS 超过阀值,MOS-FET 管开始导通。“低电压”部分的总线线路通过导通的MOS-FET 管被5V 的器件进一步下拉到低电平。此时,两部分的总线线路都是低电平,而且电压电平相同。
这三种状态显示了逻辑电平在总线系统的两个方向上传输,与驱动的部分无关。状态1 执行了电平转换功能。状态2 和3 按照I2C 总线规范的要求在两部分的总线线路之间实现“线与”的功能。
除了3.3V VDD1 和5V VDD2 的电源电压外,还可以是例如:2.5V VDD1 和12V VDD2。 在正常操作中,VDD2必须等于或高于VDD1( 在开关电源时允许VDD2 低于VDD1)。

4. 利用三极管搭建
3.3V端为高电平时,Q1导通,Q2截止,5V OUT通过R3上拉到5V系统,为5V高电平;
3.3V端为低电平时,Q1截止,Q2导通,Q2集电极被拉到低电平,5V OUT系统为低电平。
5. 利用二极管钳位

5V系统(5V IN)为高电平时,D1阳极保持3.3V+二极管正向压降的电平。输入5V高电平,输出为3.3V高电平;5V系统为低电平时,D1没有钳位作用,经R1连接到3.3V系统为低电平。还有其他多种电平电平转换方案,在实际应用中,上面这几种电路都很简单,可以实现5v和3.3v之间的通信和控制。曾经做过的电路上5V TTL电平和3.3VMCU直接相连了,也不影响实际测试应用,但是需要注意有时候负载效应可能引起电路工作不正常,因为有些TTL电路需要下一级的输入阻抗作为负载才能正常工作。为了工作的稳定性还是应用5V和3.3V的电平转换。
6. 芯片直接连接
在连接两个工作电压不同的器件时,必须要知道其各自的输出、输入阈值。知道阈值之后,可根据应用的其他需求选择器件的连接方法。表 4-1 是本文档所使用的输出、输入阈值。在设计连接时,请务必参考制造商的数据手册以获得实际的阈值电平。
比如CD74ACT 244 总线缓冲器是5V TTL,可以兼容3.3V输入。
比如3.3V 供电74LVC244A 兼容5V输入
7. 电阻分压转换法
可以使用简单的电阻分压器将 5V 器件的输出降低到适用于 3.3V 器件输入的电平。这种接口的等效电路如图 12-1 所示:

通常,源电阻 RS 非常小 (小于 10Ω),如果选择的 R1 远大于RS 的话,那么可以忽略 RS 对 R1 的影响。在接收端,负载电阻 RL 非常大 (大于500 kΩ),如果选择的R2远小于RL的话,那么可以忽略 RL 对 R2 的影响。
在功耗和瞬态时间之间存在取舍权衡。为了使接口电流的功耗需求最小,串联电阻 R1 和 R2 应尽可能大。但是,负载电容 (由杂散电容 CS 和 3.3V 器件的输入电容 CL 合成)可能会对输入信号的上升和下降时间产生不利影响。如果 R1 和 R2 过大,上升和下降时间可能会过长而无法接受。
如果忽略 RS 和 RL 的影响,则确定 R1 和 R2 的式子由下面的公式 12-1 给出。
公式 12-2 给出了确定上升和下降时间的公式。为便于电路分析,使用戴维宁等效计算来确定外加电压 VA 和串联电阻R。戴维宁等效计算定义为开路电压除以短路电流。根据公式 12-2 所施加的限制,对于图 12-1 所示电路,确定的戴维宁等效电阻 R 应为 0.66R1,戴维宁等效电压 VA 应为0.66VS。
例如,假设有下列条件存在:
• 杂散电容 = 30 pF
• 负载电容 = 5 pF
• 从 0.3V 至 3V 的最大上升时间 ≤ 1 μs
• 外加源电压 Vs = 5V
确定最大电阻的计算如公式 12-3 所示

8.3.3V→5V模拟补偿模块
该模块用于补偿 3.3V 转换到 5V 的模拟电压。下面是将 3.3V 电源供电的模拟电压转换为由 5V电源供电。右上方的 147 kΩ、 30.1 kΩ 电阻以及+5V 电源,等效于串联了 25 kΩ 电阻的 0.85V 电压源。这个等效的 25 kΩ 电阻、三个 25 kΩ 电阻以及运放构成了增益为 1 V/V 的差动放大器。0.85V等效电压源将出现在输入端的任何信号向上平移相同的幅度;以 3.3V/2 = 1.65V 为中心的信号将同时以 5.0V/2 = 2.50V 为中心。左上方的电阻限制了来自 5V 电路的电流。
9.5V→3.3V有源模拟衰减器
此技巧使用运算放大器衰减从 5V 至 3.3V 系统的信号幅值。
要将 5V 模拟信号转换为 3.3V 模拟信号,最简单的方法是使用 R1:R2 比值为 1.7:3.3 的电阻分压器。然而,这种方法存在一些问题。
1)衰减器可能会接至容性负载,构成不期望得到的低通滤波器。
2)衰减器电路可能需要从高阻抗源驱动低阻抗负载。
无论是哪种情形,都需要运算放大器用以缓冲信号。所需的运放电路是单位增益跟随器 (见图 16-1)
电路输出电压与加在输入的电压相同。
为了把 5V 信号转换为较低的 3V 信号,我们只要加上电阻衰减器即可。

如果电阻分压器位于单位增益跟随器之前,那么将为 3.3V 电路提供最低的阻抗。此外,运放可以从3.3V 供电,这将节省一些功耗。如果选择的 X 非常大的话, 5V 侧的功耗可以最大限度地减小。
如果衰减器位于单位增益跟随器之后,那么对 5V源而言就有最高的阻抗。运放必须从 5V 供电,3V 侧的阻抗将取决于 R1||R2 的值。

9. 5V→3.3V模拟限幅器
在将 5V 信号传送给 3.3V 系统时,有时可以将衰减用作增益。如果期望的信号小于 5V,那么把信号直接送入 3.3V ADC 将产生较大的转换值。当信号接近 5V 时就会出现危险。所以,需要控制电压越限的方法,同时不影响正常范围中的电压。这里将讨论三种实现方法。
  • 使用二极管,钳位过电压至 3.3V 供电系统。
  • 使用齐纳二极管,把电压钳位至任何期望的电压限。
  • 使用带二极管的运算放大器,进行精确钳位。
进行过电压钳位的最简单的方法,与将 5V 数字信号连接至 3.3V 数字信号的简单方法完全相同。使用电阻和二极管,使过量电流流入 3.3V 电源。选用的电阻值必须能够保护二极管和 3.3V 电源,同时还不会对模拟性能造成负面影响。
如果 3.3V 电源的阻抗太低,那么这种类型的钳位可能致使3.3V 电源电压上升。即使 3.3V 电源有很好的低阻抗,当二极管导通时,以及在频率足够高的情况下,当二极管没有导通时 (由于有跨越二极管的寄生电容),此类钳位都将使输入信号向 3.3V 电源施加噪声。
为了防止输入信号对电源造成影响,或者为了使输入应对较大的瞬态电流时更为从容,对前述方法稍加变化,改用齐纳二极管。齐纳二极管的速度通常要比第一个电路中所使用的快速信号二极管慢。不过,齐纳钳位一般来说更为结实,钳位时不依赖于电源的特性参数。钳位的大小取决于流经二极管的电流。这由 R1 的值决定。如果 VIN 源的输出阻抗足够大的话,也可不需要 R1。
如果需要不依赖于电源的更为精确的过电压钳位,可以使用运放来得到精密二极管。电路如图 17-3所示。运放补偿了二极管的正向压降,使得电压正好被钳位在运放的同相输入端电源电压上。如果运放是轨到轨的话,可以用 3.3V 供电。
由于钳位是通过运放来进行的,不会影响到电源。
运放不能改善低电压电路中出现的阻抗,阻抗仍为R1 加上源电路阻抗

使用特权

评论回复
沙发
tpgf| | 2024-2-5 16:53 | 只看该作者
使用电平转换芯片是一种比较可靠的办法

使用特权

评论回复
板凳
heimaojingzhang| | 2024-2-5 17:15 | 只看该作者
如果需要的功率比较大的话 还是自己搭建电路比较好

使用特权

评论回复
地板
keaibukelian| | 2024-2-5 17:31 | 只看该作者
使用mos管搭建的这个电路应该是最灵活的了

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

28

主题

1140

帖子

1

粉丝