#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define PI 3.1415926
struct complex
{
double real;
double image;
};
struct complex complex_add(struct complex c1,struct complex c2);
struct complex complex_sub(struct complex c1,struct complex c2);
struct complex complex_multi(struct complex c1,struct complex c2);
struct complex rotation_factor(int N,int n,int k);
double mold_length(struct complex c);
void fft(int len, struct complex in_x[],struct complex out_y[]);
int main()
{
int sam[8] = {1,-1,1,-1,1,-1,1,-1};
int jhg[8] = {0,0,0,0,0,0,0,0};
struct complex x[8];
struct complex y[8];
for(int i=0;i<8;i++)
{
x[i].real = sam[i];
x[i].image = jhg[i];
}
printf("时域序列\n");
for(int i=0;i<8;i++)
{
printf("(%.2f, %.2fi) \n",x[i].real,x[i].image);
}
fft(8,x,y);
printf("频域序列\n");
for(int i=0;i<8;i++)
{
printf("(%.2f, %.2fi)\n",y[i].real,y[i].image);
}
return 0;
}
struct complex complex_add(struct complex c1,struct complex c2) //复数加法
{
struct complex p;
p.real = c1.real + c2.real;
p.image = c1.image + c2.image;
return p;
}
struct complex complex_sub(struct complex c1,struct complex c2) //复数减
{
struct complex p;
p.real = c1.real - c2.real;
p.image = c1.image - c2.image;
return p;
}
struct complex complex_multi(struct complex c1,struct complex c2) //复数乘法
{
struct complex c3;
c3.real=c1.real*c2.real - c1.image *c2.image;
c3.image = c2.real* c1.image + c1.real*c2.image;
return c3;
};
struct complex rotation_factor(int N,int n,int k) //旋转因子
{
struct complex w;
w.real = cos(2* PI * n * k /N);
w.image = - sin(2* PI * n * k /N);
return w;
}
double mold_length(struct complex c) //幅度
{
return sqrt(c.real * c.real + c.image * c.image);
};
int reverse_num(int l,int oringin_num) //反位序
{
int q=0,m=0;
for(int k=l-1;k>=0;k--)
{
q = oringin_num % 2;
m += q*(1<<k);
oringin_num = oringin_num / 2;
}
return m;
}
void fft(int len, struct complex in_x[],struct complex out_y[])
{
/*
param len 序列长度,目前只能是2的指数
param in_x输入的序列
param out_y输出的序列
*/
int l,k,r,z,dist,q,j; //l是级
struct complex w,tmp;
struct complex in_x_mem[len];
l = log2(len);
for(k=0;k<len;k++)
{
in_x_mem[k] = in_x[reverse_num(l,k)]; //反位序号操作
}
for(r = 0;r<l;r++) //遍历每一级蝶形运算
{
dist = 1<<r; //提前计算每一级的间隔距离
for( j=0;j<dist;j++ ) //计算策略是拆成上下两组,先上计算,后下计算,j是计算的起始序号
{
for(k=j;k<len;k+=(dist<<1)) //不好解释,得画图理解
{
q = k+dist; //q同一组蝶形运算第二个序号
z = k << (l - r -1); //确定旋转因子的指数
w = rotation_factor(len,1,z);
//由于不是并行计算,必须先缓存
tmp = in_x_mem[k];
in_x_mem[k] = complex_add( in_x_mem[k] , complex_multi(w, in_x_mem[q]) );
in_x_mem[q] = complex_sub(tmp , complex_multi(w, in_x_mem[q]) );
}
}
}
memcpy(out_y,in_x_mem,len*sizeof(struct complex));
}
有没有反傅里叶运算