- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <math.h>
-
-
- #define PI 3.1415926
- struct complex
- {
- double real;
- double image;
- };
- struct complex complex_add(struct complex c1,struct complex c2);
- struct complex complex_sub(struct complex c1,struct complex c2);
- struct complex complex_multi(struct complex c1,struct complex c2);
- struct complex rotation_factor(int N,int n,int k);
- double mold_length(struct complex c);
- void fft(int len, struct complex in_x[],struct complex out_y[]);
-
-
-
-
- int main()
- {
- int sam[8] = {1,-1,1,-1,1,-1,1,-1};
- int jhg[8] = {0,0,0,0,0,0,0,0};
- struct complex x[8];
- struct complex y[8];
-
- for(int i=0;i<8;i++)
- {
- x[i].real = sam[i];
- x[i].image = jhg[i];
- }
- printf("时域序列\n");
-
- for(int i=0;i<8;i++)
- {
- printf("(%.2f, %.2fi) \n",x[i].real,x[i].image);
- }
-
- fft(8,x,y);
-
- printf("频域序列\n");
-
- for(int i=0;i<8;i++)
- {
- printf("(%.2f, %.2fi)\n",y[i].real,y[i].image);
- }
-
-
-
- return 0;
- }
-
- struct complex complex_add(struct complex c1,struct complex c2) //复数加法
- {
- struct complex p;
-
- p.real = c1.real + c2.real;
- p.image = c1.image + c2.image;
-
- return p;
-
- }
-
- struct complex complex_sub(struct complex c1,struct complex c2) //复数减
- {
- struct complex p;
-
- p.real = c1.real - c2.real;
- p.image = c1.image - c2.image;
-
- return p;
-
- }
-
- struct complex complex_multi(struct complex c1,struct complex c2) //复数乘法
- {
- struct complex c3;
- c3.real=c1.real*c2.real - c1.image *c2.image;
- c3.image = c2.real* c1.image + c1.real*c2.image;
-
- return c3;
- };
-
-
-
- struct complex rotation_factor(int N,int n,int k) //旋转因子
- {
- struct complex w;
-
- w.real = cos(2* PI * n * k /N);
- w.image = - sin(2* PI * n * k /N);
-
- return w;
- }
-
- double mold_length(struct complex c) //幅度
- {
- return sqrt(c.real * c.real + c.image * c.image);
- };
-
-
- int reverse_num(int l,int oringin_num) //反位序
- {
- int q=0,m=0;
-
- for(int k=l-1;k>=0;k--)
- {
- q = oringin_num % 2;
- m += q*(1<<k);
- oringin_num = oringin_num / 2;
- }
-
- return m;
- }
-
-
- void fft(int len, struct complex in_x[],struct complex out_y[])
- {
- /*
- param len 序列长度,目前只能是2的指数
- param in_x输入的序列
- param out_y输出的序列
- */
-
- int l,k,r,z,dist,q,j; //l是级
- struct complex w,tmp;
- struct complex in_x_mem[len];
-
- l = log2(len);
-
- for(k=0;k<len;k++)
- {
- in_x_mem[k] = in_x[reverse_num(l,k)]; //反位序号操作
- }
-
- for(r = 0;r<l;r++) //遍历每一级蝶形运算
- {
-
- dist = 1<<r; //提前计算每一级的间隔距离
-
- for( j=0;j<dist;j++ ) //计算策略是拆成上下两组,先上计算,后下计算,j是计算的起始序号
- {
- for(k=j;k<len;k+=(dist<<1)) //不好解释,得画图理解
- {
- q = k+dist; //q同一组蝶形运算第二个序号
- z = k << (l - r -1); //确定旋转因子的指数
-
- w = rotation_factor(len,1,z);
- //由于不是并行计算,必须先缓存
- tmp = in_x_mem[k];
-
- in_x_mem[k] = complex_add( in_x_mem[k] , complex_multi(w, in_x_mem[q]) );
- in_x_mem[q] = complex_sub(tmp , complex_multi(w, in_x_mem[q]) );
-
- }
- }
- }
- memcpy(out_y,in_x_mem,len*sizeof(struct complex));
- }
-
-
-