图1和图2 两种版本的GPIO基本结构图
如上两个图所示,标号2都为上拉、下拉电阻部分,阻值约为30k~50k欧,通过对应开关进行控制,开关由寄存器控制。
当引脚外部的器件没有干扰引脚的电压时,即没有外部的上、下拉电压,引脚的电平由引脚内部上、下拉决定,开启内部上拉电阻工作,引脚电平为高,开启内部下拉电阻工作,则引脚电平为低。同样,如果内部上、下拉电阻都不开启,这种情况就是我们所说的浮空模式。浮空模式下,引脚的电平是不可确定的。引脚的电平可以由外部的上、下拉电平决定。需要注意的是,STM32 的内部上拉是一种“弱上拉”,这样的上拉电流很弱,如果有要求大电流还是得外部上拉。
如上两个图所示,标号3都为触发器。
对于TTL肖特基触发器:
作用是将输入的连续信号转换为离散信号。可在图中找到模拟信号会在该器件之前引出。
对于标准施密特触发器:
当输入电压>正向阈值电压时,输出为高;
当输入电压<负向阈值电压时,输出为低;
当输入在正负向阈值电压之间,输出不改变,也就是说输出由高电准位翻转为低电准位,或是由低电准位翻转为高电准位对应的阈值电压是不同的。
只有当输入电压发生足够的变化时,输出才会变化,因此将这种元件命名为触发器。这种双阈值动作被称为迟滞现象,表明施密特触发器有**性。从本质上来说,施密特触发器是一种双稳态多谐振荡器。
施密特触发器可作为波形整形电路,能将模拟信号波形整形为数字电路能够处理的方波波形,而且由于施密特触发器具有滞回特性,所以可用于抗干扰,其应用包括在开回路配置中用于抗扰,以及在闭回路正回授/负回授配置中用于实现多谐振荡器。
下面看看比较器跟施密特触发器的作用的比较,就清楚的知道施密特触发器对外部输入信号具有一定抗干扰能力,如下图所示:
图3 比较器A和施密特触发器B作用比较
图1图2中标号4为P-MOS管和N-MOS管,这个结构控制 GPIO 的开漏输出和推挽输出两种模式。
开漏输出: 输出端相当于三极管的集电极, 要得到高电平状态需要上拉电阻才行。
推挽输出:这两只对称的 MOS 管每次只有一只导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载拉电流。推拉式输出既能提高电路的负载能力,又能提高开关速度。
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/panlan7/article/details/134379854
|