打印
[STM32H5]

【STM32 Nucleo-64测评】+测试I3C的动态连接机制

[复制链接]
1251|11
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
本帖最后由 suncat0504 于 2024-7-26 21:16 编辑

作为替代I2C的新总线方式,I3C依旧使用2个总线。但相对比I2C,I3C总线的特点如下:

1、支持总线上多个主设备
2、支持目标电压是3.3V、1.8V、1.2V,甚至更低。
3、支持软中断
4、支持热拔插
5、支持动态地址
6、支持4种通信模式(SDR、HDR-DDR、HDR-TSL、HDR-TSP)



其中。支持动态地址这一点,就很好。以往使用的I2C设备,基本上都是地址固定的。比如常见的0.96英寸的OLED屏,就是固定使用0x3C地址的。动态分配地址,意味着,在同一个总线了,可以同时接入相同的I3C设备,而不用担心地址冲突导致的通讯失败。作为体验,这次我使用STM32H533中的两个I3C外设,实现动态连接、收发数据。其实,只能使用自身的外设测试I3C,也是因为我手里没有其它可用的I3C设备。





因为是向下兼容的,虽然依旧是使用2根线完成的通讯,I3C使用了更为复杂的通讯协议,由于协议内容很多,我也是在学习中,这里就不废话了。直接上测试程序测试。

本次测试使用CubeIDE作为开发工具,根据STM32H533开发板的电路图及它本身的特点,使用PB6、PB7作为第一组I3C设备,PC6、PC7作为第二组I3C设备。


在主程序中,不断检查开发板上的用户按钮(占用PC13),以及检查I3C纵向上是否设备要求连接。当按钮按下的时候,程序控制从I3C设备发出连接请求。当主I3C设备在收到连接请求后,会开始分配动态地址(这个地址是你自己乐意随意设置的),并建立热连接。

实测结果很不错,很容易就建立起动态连接了。测试程序没有使用串口输出调试信息,而是使用的OLED输出调试结果。

没有按下用户按钮时的状态:

按下用户后的状态:







可以看到,在动态完成连接后,主设备I3C1给I3C2分配了一个地址50,就是0x32。这个地址使我们预先设置好,让I3C1分配给其他设备的地址之一。

    // 设备1
    TargetDesc_TypeDef TargetDesc1 = { "TARGET_ID1", DEVICE_ID1, 0x0000000000000000, 0x00, TARGET1_DYN_ADDR, };


    // 设备2
    TargetDesc_TypeDef TargetDesc2 = { "TARGET_ID2", DEVICE_ID2, 0x0000000000000000, 0x00, TARGET2_DYN_ADDR, };


    // 目标描述符数组
    TargetDesc_TypeDef *aTargetDesc[2] = {
    &TargetDesc1, /* DEVICE_ID1 */
    &TargetDesc2 /* DEVICE_ID2 */
};


// 从机请求地址分配的回调函数
void HAL_I3C_TgtReqDynamicAddrCallback(I3C_HandleTypeDef *hi3c, uint64_t targetPayload) {
    printf("从机请求地址分配。");
    GUI_ShowString(0, 16, (uint8_t*) "ReqAddr", 8, 1);


    /* Update Payload on aTargetDesc */
    aTargetDesc[uwTargetCount]->TARGET_BCR_DCR_PID = targetPayload;


    /* Send associated dynamic address */
    HAL_I3C_Ctrl_SetDynAddr(hi3c, aTargetDesc[uwTargetCount++]->DYNAMIC_ADDR);
}


主程序代码如下:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* [url=home.php?mod=space&uid=288409]@file[/url]           : main.c
* [url=home.php?mod=space&uid=247401]@brief[/url]          : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "gui.h"
#include "oled.h"

#define I3C_IDX_FRAME_1         0U  /* Index of Frame 1 */
#define I3C_IDX_FRAME_2         1U  /* Index of Frame 2 */

I3C_HandleTypeDef hi3c1;
I3C_HandleTypeDef hi3c2;
TIM_HandleTypeDef htim2;

// 与帧上下文相关的上下文缓冲区包含通信的不同缓冲值
I3C_XferTypeDef aContextBuffers[2];

// DAA过程中检测到的目标数量
__IO uint32_t uwTargetCount = 0;

// I3C发送用的缓冲区
uint8_t aTxBuffer[0x0F];

// I3C接收用的缓冲区
uint8_t aRxBuffer[RXBUFFERSIZE];

// HAL用来计算通信的控制数据的缓冲区
uint32_t aControlBuffer[0xF];

/********************/
/* Target Descriptor */
/********************/
TargetDesc_TypeDef TargetDesc1 = { "TARGET_ID1",
DEVICE_ID1, 0x0000000000000000, 0x00,
TARGET1_DYN_ADDR, };

/********************/
/* Target Descriptor */
/********************/
TargetDesc_TypeDef TargetDesc2 = { "TARGET_ID2",
DEVICE_ID2, 0x0000000000000000, 0x00,
TARGET2_DYN_ADDR, };

// 目标描述符数组
TargetDesc_TypeDef *aTargetDesc[2] = { &TargetDesc1, /* DEVICE_ID1 */
&TargetDesc2 /* DEVICE_ID2 */
};

/* Variable to catch HotJoin event */
__IO uint32_t uwHotJoinRequested = 0;

/* Buffer that contain payload data, mean PID, BCR, DCR */
uint8_t aPayloadBuffer[64 * COUNTOF(aTargetDesc)];

// 设置CCC关联数据的数组
uint8_t aDISEC_data[1] = { 0x08 };

/* Variable to display reading data */
uint32_t uwDisplayDelay = 0U;
int16_t Temperature = 0;
int16_t aGyroscope[3] = { 0 };
int16_t aAccelerometer[3] = { 0 };

// 广播用CCC的描述符
I3C_CCCTypeDef aBroadcast_CCC[] = {
// 目标地址      CCC Value           CCC data + defbyte pointer  CCC size + defbyte    Direction        */
        { 0, Broadcast_DISEC, { aDISEC_data, 1 }, LL_I3C_DIRECTION_WRITE }, { 0,
                Broadcast_RSTDAA, { NULL, 0 }, LL_I3C_DIRECTION_WRITE }, };

UART_HandleTypeDef huart1;

void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I3C1_Init(void);
static void MX_I3C2_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM2_Init(void);
static void EXTI13_IRQHandler_Config(void);
void checkI3CDevice(void);

/**
* @brief  The application entry point.
* @retval int
*/
uint8_t flag = 0;

// 设备是否发出过I3C申请信号
uint8_t send_flag = 0;
int main(void) {
    // 复位所有外设,初始化Flash接口和Systick。
    HAL_Init();

    // 设置系统时钟
    SystemClock_Config();

    // 初始化相关外设
    MX_GPIO_Init();
    MX_I3C1_Init();
    MX_I3C2_Init();
    MX_USART1_UART_Init();
    MX_TIM2_Init();
    EXTI13_IRQHandler_Config();

    // 初始化OLED并显示信息
    OLED_Init();
    OLED_Clear(0);
    GUI_ShowString(0, 0, (uint8_t*) "Test STM32H533 I3C", 8, 1);

    HAL_Delay(100);

    // 允许hi3c1接受其他设备的动态连接请求(中断方式)
    if (HAL_I3C_ActivateNotification(&hi3c1, NULL, HAL_I3C_IT_HJIE) != HAL_OK) {
        /* Error_Handler() function is called when error occurs. */
        Error_Handler();
    }

    while (1) {
        checkI3CDevice();

    }
}

// 检查是否存在I3C设备(由子设备发出请求,主设备响应后,分发地址)
void checkI3CDevice(void) {
    // 等待目标连接上
    while (uwHotJoinRequested == 0U) {
        // 为热连接启动监听
        if (send_flag == 0) {
            // 检查用户按钮是否按下
            if (HAL_GPIO_ReadPin(USER_BUTTON_GPIO_Port, USER_BUTTON_Pin) == 1) {
                // 由I3C2发出连接请求
                if (HAL_I3C_Tgt_HotJoinReq_IT(&hi3c2) != HAL_OK) {
                    Error_Handler();
                } else {
                    send_flag = 1;
                }
            }
        }
    }

    // 分配动态地址
    if (HAL_I3C_Ctrl_DynAddrAssign_IT(&hi3c1, I3C_ONLY_ENTDAA) != HAL_OK) {
        Error_Handler();
    }

    // 获取状态
    while (HAL_I3C_GetState(&hi3c1) != HAL_I3C_STATE_LISTEN) {

    }

    // 复位,等待捕捉其它I3C设备
    uwHotJoinRequested = 0;
}

/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void) {
    RCC_OscInitTypeDef RCC_OscInitStruct = { 0 };
    RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0 };

    /** Configure the main internal regulator output voltage
     */
    __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);

    while (!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {
    }

    /** Initializes the RCC Oscillators according to the specified parameters
     * in the RCC_OscInitTypeDef structure.
     */
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_CSI;
    RCC_OscInitStruct.CSIState = RCC_CSI_ON;
    RCC_OscInitStruct.CSICalibrationValue = RCC_CSICALIBRATION_DEFAULT;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = RCC_PLL1_SOURCE_CSI;
    RCC_OscInitStruct.PLL.PLLM = 1;
    RCC_OscInitStruct.PLL.PLLN = 50;
    RCC_OscInitStruct.PLL.PLLP = 2;
    RCC_OscInitStruct.PLL.PLLQ = 2;
    RCC_OscInitStruct.PLL.PLLR = 2;
    RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1_VCIRANGE_2;
    RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1_VCORANGE_WIDE;
    RCC_OscInitStruct.PLL.PLLFRACN = 0;
    if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
        Error_Handler();
    }

    /** Initializes the CPU, AHB and APB buses clocks
     */
    RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
            | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2 | RCC_CLOCKTYPE_PCLK3;
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
    RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
    RCC_ClkInitStruct.APB3CLKDivider = RCC_HCLK_DIV1;

    if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) {
        Error_Handler();
    }
}

/**
* @brief I3C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I3C1_Init(void) {

    I3C_FifoConfTypeDef sFifoConfig = { 0 };
    I3C_CtrlConfTypeDef sCtrlConfig = { 0 };

    hi3c1.Instance = I3C1;
    hi3c1.Mode = HAL_I3C_MODE_CONTROLLER;
    hi3c1.Init.CtrlBusCharacteristic.SDAHoldTime = HAL_I3C_SDA_HOLD_TIME_1_5;
    hi3c1.Init.CtrlBusCharacteristic.WaitTime = HAL_I3C_OWN_ACTIVITY_STATE_0;
    hi3c1.Init.CtrlBusCharacteristic.SCLPPLowDuration = 0x09;
    hi3c1.Init.CtrlBusCharacteristic.SCLI3CHighDuration = 0x09;
    hi3c1.Init.CtrlBusCharacteristic.SCLODLowDuration = 0x59;
    hi3c1.Init.CtrlBusCharacteristic.SCLI2CHighDuration = 0x00;
    hi3c1.Init.CtrlBusCharacteristic.BusFreeDuration = 0x32;
    hi3c1.Init.CtrlBusCharacteristic.BusIdleDuration = 0xf8;
    if (HAL_I3C_Init(&hi3c1) != HAL_OK) {
        Error_Handler();
    }

    /** Configure FIFO
     */
    sFifoConfig.RxFifoThreshold = HAL_I3C_RXFIFO_THRESHOLD_1_4;
    sFifoConfig.TxFifoThreshold = HAL_I3C_TXFIFO_THRESHOLD_1_4;
    sFifoConfig.ControlFifo = HAL_I3C_CONTROLFIFO_DISABLE;
    sFifoConfig.StatusFifo = HAL_I3C_STATUSFIFO_DISABLE;
    if (HAL_I3C_SetConfigFifo(&hi3c1, &sFifoConfig) != HAL_OK) {
        Error_Handler();
    }

    /** Configure controller
     */
    sCtrlConfig.DynamicAddr = 0;
    sCtrlConfig.StallTime = 0x00;
    sCtrlConfig.HotJoinAllowed = ENABLE;
    sCtrlConfig.ACKStallState = DISABLE;
    sCtrlConfig.CCCStallState = DISABLE;
    sCtrlConfig.TxStallState = DISABLE;
    sCtrlConfig.RxStallState = DISABLE;
    sCtrlConfig.HighKeeperSDA = DISABLE;
    if (HAL_I3C_Ctrl_Config(&hi3c1, &sCtrlConfig) != HAL_OK) {
        Error_Handler();
    }
}

/**
* @brief I3C2 Initialization Function
* @param None
* @retval None
*/
static void MX_I3C2_Init(void) {

    I3C_FifoConfTypeDef sFifoConfig = { 0 };
    I3C_TgtConfTypeDef sTgtConfig = { 0 };

    hi3c2.Instance = I3C2;
    hi3c2.Mode = HAL_I3C_MODE_TARGET;
    hi3c2.Init.TgtBusCharacteristic.BusAvailableDuration = 0xf8;
    if (HAL_I3C_Init(&hi3c2) != HAL_OK) {
        Error_Handler();
    }

    /** Configure FIFO
     */
    sFifoConfig.RxFifoThreshold = HAL_I3C_RXFIFO_THRESHOLD_1_4;
    sFifoConfig.TxFifoThreshold = HAL_I3C_TXFIFO_THRESHOLD_1_4;
    sFifoConfig.ControlFifo = HAL_I3C_CONTROLFIFO_DISABLE;
    sFifoConfig.StatusFifo = HAL_I3C_STATUSFIFO_DISABLE;

    if (HAL_I3C_SetConfigFifo(&hi3c2, &sFifoConfig) != HAL_OK) {
        Error_Handler();
    }

    /** Configure Target
     */
    sTgtConfig.Identifier = 0xC7;
    sTgtConfig.MIPIIdentifier = DEVICE_ID2;
    sTgtConfig.CtrlRoleRequest = DISABLE;
    sTgtConfig.HotJoinRequest = ENABLE;
    sTgtConfig.IBIRequest = DISABLE;
    sTgtConfig.IBIPayload = DISABLE;
    sTgtConfig.IBIPayloadSize = HAL_I3C_PAYLOAD_EMPTY;
    sTgtConfig.MaxReadDataSize = 0xFF;
    sTgtConfig.MaxWriteDataSize = 0xFF;
    sTgtConfig.CtrlCapability = DISABLE;
    sTgtConfig.GroupAddrCapability = DISABLE;
    sTgtConfig.DataTurnAroundDuration = HAL_I3C_TURNAROUND_TIME_TSCO_LESS_12NS;
    sTgtConfig.MaxReadTurnAround = 0;
    sTgtConfig.MaxDataSpeed = HAL_I3C_GETMXDS_FORMAT_1;
    sTgtConfig.MaxSpeedLimitation = DISABLE;
    sTgtConfig.HandOffActivityState = HAL_I3C_HANDOFF_ACTIVITY_STATE_0;
    sTgtConfig.HandOffDelay = DISABLE;
    sTgtConfig.PendingReadMDB = DISABLE;
    if (HAL_I3C_Tgt_Config(&hi3c2, &sTgtConfig) != HAL_OK) {
        Error_Handler();
    }

}

/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void) {

    TIM_ClockConfigTypeDef sClockSourceConfig = { 0 };
    TIM_MasterConfigTypeDef sMasterConfig = { 0 };

    /* USER CODE BEGIN TIM2_Init 1 */

    /* USER CODE END TIM2_Init 1 */
    htim2.Instance = TIM2;
    htim2.Init.Prescaler = 0;
    htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
    htim2.Init.Period = 100000;   // 100MHz:1mS

    htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
    htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
    if (HAL_TIM_Base_Init(&htim2) != HAL_OK) {
        Error_Handler();
    }
    sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
    if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) {
        Error_Handler();
    }
    sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
    sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE;
    if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig)
            != HAL_OK) {
        Error_Handler();
    }

    // 允许Timer2中断
    HAL_TIM_Base_Start_IT(&htim2);

    HAL_NVIC_EnableIRQ(TIM2_IRQn);

}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void) {

    huart1.Instance = USART1;
    huart1.Init.BaudRate = 115200;
    huart1.Init.WordLength = UART_WORDLENGTH_8B;
    huart1.Init.StopBits = UART_STOPBITS_1;
    huart1.Init.Parity = UART_PARITY_NONE;
    huart1.Init.Mode = UART_MODE_TX_RX;
    huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
    huart1.Init.OverSampling = UART_OVERSAMPLING_16;
    huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
    huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
    huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
    if (HAL_UART_Init(&huart1) != HAL_OK) {
        Error_Handler();
    }
    if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8)
            != HAL_OK) {
        Error_Handler();
    }
    if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8)
            != HAL_OK) {
        Error_Handler();
    }
    if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK) {
        Error_Handler();
    }
}

/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void) {
    GPIO_InitTypeDef GPIO_InitStruct = { 0 };

    /* GPIO Ports Clock Enable */
    __HAL_RCC_GPIOC_CLK_ENABLE();
    __HAL_RCC_GPIOA_CLK_ENABLE();
    __HAL_RCC_GPIOB_CLK_ENABLE();

    /*Configure GPIO pin Output Level */
    HAL_GPIO_WritePin(USER_LED_GPIO_Port, USER_LED_Pin, GPIO_PIN_RESET);

    /*Configure GPIO pin Output Level */
    HAL_GPIO_WritePin(GPIOA, OLED_SCL_Pin | OLED_SDA_Pin, GPIO_PIN_SET);

    // 设置用户按钮使用的GPIO口
    GPIO_InitStruct.Pin = USER_BUTTON_Pin;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(USER_BUTTON_GPIO_Port, &GPIO_InitStruct);

    // 设置用户LED按钮使用的GPIO口
    GPIO_InitStruct.Pin = USER_LED_Pin;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(USER_LED_GPIO_Port, &GPIO_InitStruct);

    // 设置OLED使用的接口(模拟方式)
    GPIO_InitStruct.Pin = OLED_SCL_Pin | OLED_SDA_Pin;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_PULLUP;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}

/**
* @brief 从机请求地址分配的回调函数
* @par Called functions
* - HAL_I3C_TgtReqDynamicAddrCallback()
* - HAL_I3C_Ctrl_SetDynamicAddress()
* @retval None
*/
void HAL_I3C_TgtReqDynamicAddrCallback(I3C_HandleTypeDef *hi3c,
        uint64_t targetPayload) {
    printf("从机请求地址分配。");
    GUI_ShowString(0, 16, (uint8_t*) "ReqAddr", 8, 1);

    /* Update Payload on aTargetDesc */
    aTargetDesc[uwTargetCount]->TARGET_BCR_DCR_PID = targetPayload;

    /* Send associated dynamic address */
    HAL_I3C_Ctrl_SetDynAddr(hi3c, aTargetDesc[uwTargetCount++]->DYNAMIC_ADDR);
}

/**
* @brief  控制器完成动态地址的分配的回调函数
* @param  hi3c : [IN] 包含配置信息的结构体.
* @retval None
*/
void HAL_I3C_CtrlDAACpltCallback(I3C_HandleTypeDef *hi3c) {
    printf("完成动态地址的分配。");
    GUI_ShowString(60, 16, (uint8_t*) "Addr OK", 8, 1);
}

/**
* @brief 收到连接请求后代额回调函数.
* @par Called functions
* - HAL_I3C_NotifyCallback()
* @retval None
*/
void HAL_I3C_NotifyCallback(I3C_HandleTypeDef *hi3c, uint32_t eventId) {
    if ((eventId & EVENT_ID_HJ) == EVENT_ID_HJ) {
        HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);

        // 建立收到连接请求的标志
        printf("收到连接请求!");
        GUI_ShowString(0, 8, (uint8_t*) "Notify", 8, 1);
        uwHotJoinRequested = 1;

    }
}

/**
* @brief 从机(I3C2)连接成功的回调函数.
*        函数目的是为了检查热连接过程是否完成
* @par Called functions
* - HAL_I3C_TgtHotJoinCallback()
* @retval None
*/
void HAL_I3C_TgtHotJoinCallback(I3C_HandleTypeDef *hi3c, uint8_t dynamicAddress) {
    // 从机连上
    GUI_ShowString(0, 24, (uint8_t*) "Target Addr=", 8, 1);
    GUI_ShowNum(100, 24, dynamicAddress, 2, 8, 1);
    printf("Slave is OK! Address=%d", dynamicAddress);
}

/**
* @brief  This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void) {
    /* USER CODE BEGIN Error_Handler_Debug */
    /* User can add his own implementation to report the HAL error return state */
    __disable_irq();
    while (1) {
    }
    /* USER CODE END Error_Handler_Debug */
}

// 定时器2的溢出中断回调函数
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
    BSP_LED_Toggle(LED2);
}

/* USER CODE BEGIN 4 */
/**
* @brief  Configures EXTI line 13 (connected to PC.13 pin) in interrupt mode
* @param  None
* @retval None
*/
static void EXTI13_IRQHandler_Config(void) {
    GPIO_InitTypeDef GPIO_InitStructure;

    /* Enable GPIOC clock */
    __HAL_RCC_GPIOC_CLK_ENABLE();

    /* Configure PC.13 pin as input floating */
    GPIO_InitStructure.Mode = GPIO_MODE_IT_RISING_FALLING; //GPIO_MODE_IT_FALLING;

    GPIO_InitStructure.Pull = GPIO_NOPULL;
    GPIO_InitStructure.Pin = BUTTON_USER_PIN;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStructure);

    /* Enable and set line 13 Interrupt to the lowest priority */
    HAL_NVIC_SetPriority(EXTI13_IRQn, 2, 0);
    HAL_NVIC_EnableIRQ(EXTI13_IRQn);
}

void HAL_GPIO_EXTI_Rising_Callback(uint16_t GPIO_Pin) {
    // 判断是不是来自PC13的
    if (GPIO_Pin == BUTTON_USER_PIN) {
        /* Toggle LED2 */
        BSP_LED_On(LED2);
    }
}

void HAL_GPIO_EXTI_Falling_Callback(uint16_t GPIO_Pin) {
    // 判断是不是来自PC13的
    if (GPIO_Pin == BUTTON_USER_PIN) {
        /* Toggle LED2 */
        BSP_LED_Off(LED2);
    }
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */



使用特权

评论回复
沙发
kzlzqi| | 2024-7-29 15:06 | 只看该作者
I3C 允许多个主设备在同一个总线上进行通信,这不同于 I2C 的单主设备模式。

使用特权

评论回复
板凳
申小林一号| | 2024-7-29 22:50 | 只看该作者
感谢分享

使用特权

评论回复
地板
申小林一号| | 2024-7-29 22:51 | 只看该作者
感谢分享

使用特权

评论回复
5
纠结的那些年| | 2024-7-31 11:56 | 只看该作者
I3C 可以支持从 3.3V 到更低电压的目标电压,使其能够在更广泛的电源条件下工作。

使用特权

评论回复
6
AdaMaYun| | 2024-7-31 12:59 | 只看该作者
I3C依旧使用2个总线,功能更强大稳定性更好

使用特权

评论回复
7
为你转身| | 2024-8-31 13:46 | 只看该作者
设计上兼顾了I2C的简单性,同时引入了许多新特性以支持更复杂和高效的通信需求。

使用特权

评论回复
8
为你转身| | 2024-8-31 13:48 | 只看该作者
你提到的 I3C 特性确实使它在许多应用中比 I2C 更具优势。

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

认证:大连伊飞特信息技术有限公司软件工程师
简介:本人于1993年毕业于大连理工大学。毕业后从事单片机开发工作5年,之后转入软件开发工作至今。

130

主题

3932

帖子

5

粉丝