使用STM32读写SD卡在低功耗存储中的应用是比较常见的,但是网上大多数资料都是基于标准库或者基于寄存器的开发。随着嵌入式设备越来越复杂,使用HAL库能够大大降低开发者的学习成本,从而提高开发效率。近年来,ST官方主推以STM32CubeMx为核心代码初始化工具,给开发者节省了配置硬件要花费的精力。
然而,由于HAL是一个硬件抽象层的库,它将不同系列的芯片硬件封装成了统一的接口,但是无法保证能够涵盖所有开发情况。在使用STM32F4开发SD卡读写功能的时候,我发现ST官方提供的HAL存在一些严重Bug,无法直接使用。本文就来填一填ST官方留下的坑。
硬件准备
1、STM32F407VET6开发板,带SD卡槽
2、1G逻辑分析仪
软件准备
STM32CubeMX (本项目使用6.12.1版本)
IAR 9.50.2(本项目主要使用IAR,相比于Keil编译速度更快,生成的文件体积更小,若需要Keil版本的代码,可通过STM32CubeMX生成对应版本)
操作步骤
使用STM32CubeMx生成代码
1、配置RCC
2、配置调试器
3、配置SDIO,注意这里要配置DMA和SDIO全局中断,其它默认
4、添加一个串口用于调试
5、配置时钟树
6、生成代码
修改代码
1、重定向printf函数输出到串口,用于调试
#include <stdio.h>
int fputc(int ch, FILE *f) {
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, HAL_MAX_DELAY);
return ch;
}
2、主函数如下
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_SDIO_SD_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
setvbuf(stdout, NULL, _IONBF, 0);
printf("初始化完毕\n");
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
3、编译下载发现无法输出预期,于是开始了Debug,发现跳转到了Error_Handler
4、打开Call Stack,发现错误在MX_SDIO_SD_Init();这个函数
5、于是继续跟踪,发现这里出错了,查找资料后发现这里生成的代码是有问题的(ST官方代码的第一个大坑)
6、将代码改为如下后重新运行
void MX_SDIO_SD_Init(void)
{
/* USER CODE BEGIN SDIO_Init 0 */
/* USER CODE END SDIO_Init 0 */
/* USER CODE BEGIN SDIO_Init 1 */
/* USER CODE END SDIO_Init 1 */
hsd.Instance = SDIO;
hsd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
hsd.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
hsd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE;
hsd.Init.BusWide = SDIO_BUS_WIDE_1B; // 这里只能是使用SDIO的1Bit总线模式进行初始化
hsd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
hsd.Init.ClockDiv = 0;
if (HAL_SD_Init(&hsd) != HAL_OK)
{
Error_Handler();
}
if (HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SDIO_Init 2 */
/* USER CODE END SDIO_Init 2 */
}
可以看到输出,说明初始化通过
7、使用DMA读写SD卡,这里提一点,由于DMA和SDIO模块是分开的,因此当DMA写入完成之后,SDIO的总线可能还处于正忙状态,此时若强行写入SDIO只能导致失败。如果手动添加延时可以一定程度改善,但是无法完全解决这个问题。使用逻辑分析仪调试之后发现只有当SDIO_CMD和SDIO_D0都空闲(高电平)的时候,调用DMA写入才不会失败,因此有了如下的补丁代码。
// 将数据通过DMA写入
if (HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_8) == 1 && HAL_GPIO_ReadPin(GPIOD, GPIO_PIN_12) == 1) // 补丁,只有当SDIO总线空闲的时候才能够发起写入,否则出错
{
HAL_SD_WriteBlocks_DMA(&hsd, buff_w, 0, DMA_NUM_BLOCKS_TO_WRITE);
}
测试SD卡读写
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "dma.h"
#include "sdio.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include <string.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define BLOCK_SIZE 512 // 一个块的字节数节
#define DMA_NUM_BLOCKS_TO_WRITE 64 // 每一次DMA写入块的数量
#define DMA_NUM_BLOCKS_TO_READ 64 // 每一次DMA读出块的数量
#define BUFFER_SIZE_W DMA_NUM_BLOCKS_TO_WRITE*BLOCK_SIZE // 写缓冲区大小
#define BUFFER_SIZE_R DMA_NUM_BLOCKS_TO_READ*BLOCK_SIZE // 读缓冲区大小
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
uint8_t buff_w[BUFFER_SIZE_W];
uint8_t buff_r[BUFFER_SIZE_R];
uint8_t sdio_write_done=0;
uint8_t sdio_read_done=0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
// 重定向printf函数输出到串口
int fputc(int ch, FILE *f) {
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, HAL_MAX_DELAY);
return ch;
}
void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsd)
{
sdio_write_done = 1;
}
void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsd)
{
sdio_read_done = 1;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_SDIO_SD_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
setvbuf(stdout, NULL, _IONBF, 0);
printf("初始化完毕\n");
// 生成测试数据
printf("正在生成测试数据\n");
for (uint32_t i=0; i<sizeof(buff_w); i++)
{
buff_w=i;
}
// 写入SD卡
printf("正在写入数据\n");
// 将数据通过DMA写入
if (HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_8) == 1 && HAL_GPIO_ReadPin(GPIOD, GPIO_PIN_12) == 1) // 补丁,只有当SDIO总线空闲的时候才能够发起写入,否则出错
{
HAL_SD_WriteBlocks_DMA(&hsd, buff_w, 0, DMA_NUM_BLOCKS_TO_WRITE);
}
while (sdio_write_done == 0);
printf("数据写入完成\n");
// 读取SD卡数据并且通过串口输出
printf("正在读取数据\n");
// 将数据读出到buff_r中
if (HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_8) == 1 && HAL_GPIO_ReadPin(GPIOD, GPIO_PIN_12) == 1)
{
HAL_SD_ReadBlocks_DMA(&hsd, buff_r, 0, DMA_NUM_BLOCKS_TO_READ);
}
while (sdio_read_done == 0);
if (0 == memcmp(buff_w, buff_r, sizeof(buff_r)))
{
printf("数据是一致的\n");
}
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
结果如下
初始化完毕
正在生成测试数据
正在写入数据
数据写入完成
正在读取数据
数据是一致的
写入的数据如下
读出的数据如下
总结
ST官方的代码有3大坑:
1、SDIO初始化的坑,必须要使用1bit总线的SDIO来初始化SD卡,否则会导致初始化失败
2、采用轮询方式或者中断方式读写SDIO有问题,这里建议采用DMA进行读写
3、使用DMA读写SD卡的时候需要实现检查当前SDIO是空闲的,否则会出错
代码
https://github.com/dwgan/STM32F407_SDIO
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/qq_39432978/article/details/143101422
|
|