打印
[嵌入式Linux]

如何用OpenCV的相机捕捉视频进行人脸检测--基于米尔NXP i.MX93开发板

[复制链接]
1190|0
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
myir米尔|  楼主 | 2024-11-15 17:59 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本篇测评由优秀测评者“**_3914144”提供。

本文将介绍基于米尔电子MYD-LMX93开发板(米尔基于NXP i.MX93开发板)的基于OpenCV的人脸检测方案测试。
OpenCV提供了一个非常简单的接口,用于相机捕捉一个视频(我用的电脑内置摄像头)
1、安装python3-opencv
apt install python3-opencv

2、查看摄像头支持的格式与分辨率
import cv2
video = cv2.VideoCapture(0)


设置相机参数
video .set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
video .set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
while True:
    ret, frame = video.read()
    cv2.imshow("A video", frame)
c = cv2.waitKey(1)
if c == 27:
    breakvideo.release()cv2.destroyAllWindows()

保存后执行”python3 opencv_test.py
OpenCV装好后,可以为后面的人脸检测提供可行性。
要实现人脸识别功能,首先要进行人脸检测,判断出图片中人脸的位置,才能进行下一步的操作。
OpenCV人脸检测方法
在OpenCV中主要使用了两种特征(即两种方法)进行人脸检测,Haar特征和LBP特征。用得最多的是Haar特征人脸检测,此外OpenCV中还集成了深度学习方法来实现人脸检测。

【参考资料】
使用OpenCV工具包成功实现人脸检测与人脸识别,包括传统视觉和深度学习方法(附完整代码,模型下载......)_opencv人脸识别-CSDN博客
【Haar级联检测器预训练模型下载】
opencv/opencv: Open Source Computer Vision Library (github.com)
下载好的,在opencv-4.xdatahaarcascades文件夹下有模型,把他上传到开发板。
【获取检测人脸的图片】
我在百度上找到了**的图片,并把它也上传到开发板。
【编写检测代码】
import numpy as np
import cv2 as cv

if __name__ == '__main__':
    # (6) 使用 Haar 级联分类器 预训练模型 检测人脸
    # 读取待检测的图片
    img = cv.imread("yanmi.jpg")
    print(img.shape)
   
    # 加载 Haar 级联分类器 预训练模型
    model_path = "haarcascade_frontalface_alt2.xml"
    face_detector = cv.CascadeClassifier(model_path)  # <class 'cv2.CascadeClassifier'>
    # 使用级联分类器检测人脸
    faces = face_detector.detectMultiScale(img, scaleFactor=1.1, minNeighbors=1,
                                             minSize=(30, 30), maxSize=(300, 300))
    print(faces.shape)  # (17, 4)
    print(faces[0])  # (x, y, width, height)
   
    # 绘制人脸检测框
    for x, y, width, height in faces:
        cv.rectangle(img, (x, y), (x + width, y + height), (0, 0, 255), 2, cv.LINE_8, 0)
     # 显示图片
     cv.imshow("faces", img)
     cv.waitKey(0)
     cv.destroyAllWindows()

【实验效果】
运行程序后,可以正确地识别,效果如下:


使用特权

评论回复

相关帖子

发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

56

主题

56

帖子

3

粉丝