打印
[ARM入门]

什么是大模型?

[复制链接]
1121|1
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
大模型,英文名叫Large Model,大型模型。早期的时候,也叫Foundation Model,基础模型。
大模型是一个简称。完整的叫法,应该是“人工智能预训练大模型”。预训练,是一项技术,我们后面再解释。
我们现在口头上常说的大模型,实际上特指大模型的其中一类,也是用得最多的一类——语言大模型(Large Language Model,也叫大语言模型,简称LLM)。
除了语言大模型之外,还有视觉大模型、多模态大模型等。现在,包括所有类别在内的大模型合集,被称为广义的大模型。而语言大模型,被称为狭义的大模型。 从本质来说,大模型,是包含超大规模参数(通常在十亿个以上)的神经网络模型。

之前给大家科普人工智能(链接)的时候,小枣君介绍过,神经网络是人工智能领域目前最基础的计算模型。它通过模拟大脑中神经元的连接方式,能够从输入数据中学习并生成有用的输出。 这是一个全连接神经网络(每层神经元与下一层的所有神经元都有连接),包括1个输入层,N个隐藏层,1个输出层。
大名鼎鼎的卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)以及transformer架构,都属于神经网络模型。
目前,业界大部分的大模型,都采用了transformer架构。
刚才提到,大模型包含了超大规模参数。实际上,大模型的“大”,不仅是参数规模大,还包括:架构规模大、训练数据大、算力需求大。 以OpenAI公司的GPT-3为例。这个大模型的隐藏层一共有96层,每层的神经元数量达到2048个。
整个架构的规模就很大(我可画不出来),神经元节点数量很多。
大模型的参数数量和神经元节点数有一定的关系。简单来说,神经元节点数越多,参数也就越多。例如,GPT-3的参数数量,大约是1750亿。
大模型的训练数据,也是非常庞大的。
同样以GPT-3为例,采用了45TB的文本数据进行训练。即便是清洗之后,也有570GB。具体来说,包括CC数据集(4千亿词)+WebText2(190亿词)+BookCorpus(670亿词)+维基百科(30亿词),绝对堪称海量。
最后是算力需求。
这个大家应该都听说过,训练大模型,需要大量的GPU算卡资源。而且,每次训练,都需要很长的时间。根据公开的数据显示,训练GPT-3大约需要3640PFLOP·天(PetaFLOP·Days)。如果采用512张英伟达的A100 GPU(单卡算力195 TFLOPS),大约需要1个月的时间。训练过程中,有时候还会出现中断,实际时间会更长。

总而言之,大模型就是一个虚拟的庞然大物,架构复杂、参数庞大、依赖海量数据,且非常烧钱。
相比之下,参数较少(百万级以下)、层数较浅的模型,是小模型。小模型具有轻量级、高效率、易于部署等优点,适用于数据量较小、计算资源有限的垂直领域场景。

632976743132a6cec5.png (393.4 KB )

632976743132a6cec5.png

156156743134a5c1d0.png (467.58 KB )

156156743134a5c1d0.png

使用特权

评论回复

相关帖子

沙发
yangjiaxu| | 2024-11-30 09:03 | 只看该作者
大模型我理解就是大型的数据库,只是有规则规律的数据库,可以快速检索其中的 内容

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

认证:苏州澜宭自动化科技嵌入式工程师
简介:本人从事磁编码器研发工作,负责开发2500线增量式磁编码器以及17位、23位绝对值式磁编码器,拥有多年嵌入式开发经验,精通STM32、GD32、N32等多种品牌单片机,熟练使用单片机各种外设。

504

主题

3896

帖子

47

粉丝