本帖最后由 qintian0303 于 2024-12-17 10:38 编辑
QSPI是Queued SPI的简写,是Motorola公司推出的SPI接口的扩展,比SPI应用更加广泛。在SPI协议的基础上,Motorola公司对其功能进行了增强,增加了队列传输机制,推出了队列串行外围接口协议(即QSPI协议)。QSPI 是一种专用的通信接口,连接单、双或四(条数据线) SPI Flash 存储介质。QSPI是一个内存控制器,用于连接具有SPI兼容接口的串行ROM(非易失性存储器。
我们看一下核心板上的外扩Flash:
外扩的Flash的型号是AT25SF128B。
QSPI 使用 6 个信号连接Flash,分别是四个数据线QIO0~QIO3,一个时钟输出CLK,一个片选输出(低电平有效)QSSL,它们的作用介绍如下:
QSSL:片选输出(低电平有效),适用于 FLASH 1。如果 QSPI 始终在双闪存模式下工作,则其也可用于 FLASH 2从设备选择信号线。QSPI通讯以QSSL线置低电平为开始信号,以QSSL线被拉高作为结束信号。
CLK:时钟输出,适用于两个存储器,用于通讯数据同步。它由通讯主机产生,决定了通讯的速率, 不同的设备支持的最高时钟频率不一样,两个设备之间通讯时,通讯速率受限于低速设备。
QIO0QIO0~QIO3:四线模式中为双向 IO。
接下来进行软件配置:
添加OSPI功能模块:
接下来我们配置一下引脚:
一共是6个引脚,接下来配置模块信息:
下面是部分Flash的命令,我们可以初始化这些内容:
接下来我们代码测试一下QSPI的功能,我们定义了一些基础功能测试:
uint8_t g_read_data [OSPI_B_APP_DATA_SIZE] = {RESET_VALUE};
uint8_t g_write_data [OSPI_B_APP_DATA_SIZE] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F,
};
spi_flash_direct_transfer_t g_ospi_b_direct_transfer [OSPI_B_TRANSFER_MAX] =
{
/* Transfer structure for SPI mode */
[OSPI_B_TRANSFER_WRITE_ENABLE_SPI] =
{
.command = OSPI_B_COMMAND_WRITE_ENABLE_SPI,
.address = OSPI_B_ADDRESS_DUMMY,
.data = OSPI_B_DATA_DUMMY,
.command_length = OSPI_B_COMMAND_LENGTH_SPI,
.address_length = OSPI_B_ADDRESS_LENGTH_ZERO,
.data_length = OSPI_B_DATA_LENGTH_ZERO,
.dummy_cycles = OSPI_B_DUMMY_CYCLE_WRITE_SPI
},
[OSPI_B_TRANSFER_READ_STATUS_SPI] =
{
.command = OSPI_B_COMMAND_READ_STATUS_SPI,
.address = OSPI_B_ADDRESS_DUMMY,
.data = OSPI_B_DATA_DUMMY,
.command_length = OSPI_B_COMMAND_LENGTH_SPI,
.address_length = OSPI_B_ADDRESS_LENGTH_ZERO,
.data_length = OSPI_B_DATA_LENGTH_ONE,
.dummy_cycles = OSPI_B_DUMMY_CYCLE_READ_STATUS_SPI
},
[OSPI_B_TRANSFER_READ_DEVICE_ID_SPI] =
{
.command = OSPI_B_COMMAND_READ_DEVICE_ID_SPI, //0x9f
.address = OSPI_B_ADDRESS_DUMMY, //0
.data = OSPI_B_DATA_DUMMY, //0
.command_length = OSPI_B_COMMAND_LENGTH_SPI, //1
.address_length = OSPI_B_ADDRESS_LENGTH_ZERO, //0
.data_length = OSPI_B_DATA_LENGTH_FOUR, //4
.dummy_cycles = OSPI_B_DUMMY_CYCLE_READ_STATUS_SPI //0
}
};
fsp_err_t ospi_b_read_device_id (uint32_t * const p_id)
{
fsp_err_t err = FSP_SUCCESS;
spi_flash_direct_transfer_t transfer = {RESET_VALUE};
/* Read and check flash device ID */
transfer = g_ospi_b_direct_transfer[OSPI_B_TRANSFER_READ_DEVICE_ID_SPI];
err = R_OSPI_B_DirectTransfer(&g_qspi0_flash_ctrl, &transfer, SPI_FLASH_DIRECT_TRANSFER_DIR_READ);
if(err!=FSP_SUCCESS)
{
printf("R_OSPI_B_DirectTransfer API FAILED \r\n");
}
/* Get flash device ID */
*p_id = transfer.data;
return err;
}
static fsp_err_t ospi_b_write_enable (void)
{
fsp_err_t err = FSP_SUCCESS;
spi_flash_direct_transfer_t transfer = {RESET_VALUE};
/* Transfer write enable command */
transfer = g_ospi_b_direct_transfer[OSPI_B_TRANSFER_WRITE_ENABLE_SPI];
err = R_OSPI_B_DirectTransfer(&g_qspi0_flash_ctrl, &transfer, SPI_FLASH_DIRECT_TRANSFER_DIR_WRITE);
assert(FSP_SUCCESS == err);
/* Read Status Register */
transfer = g_ospi_b_direct_transfer[OSPI_B_TRANSFER_READ_STATUS_SPI];
err = R_OSPI_B_DirectTransfer(&g_qspi0_flash_ctrl, &transfer, SPI_FLASH_DIRECT_TRANSFER_DIR_READ);
assert(FSP_SUCCESS == err);
/* Check Write Enable bit in Status Register */
if(OSPI_B_WEN_BIT_MASK != (transfer.data & OSPI_B_WEN_BIT_MASK))
{
printf("Write enable FAILED\r\n");
}
return err;
}
static fsp_err_t ospi_b_wait_operation (uint32_t timeout)
{
fsp_err_t err = FSP_SUCCESS;
spi_flash_status_t status = {RESET_VALUE};
status.write_in_progress = true;
while (status.write_in_progress)
{
/* Get device status */
R_OSPI_B_StatusGet(&g_qspi0_flash_ctrl, &status);
if(RESET_VALUE == timeout)
{
printf("OSPI time out occurred\r\n");
}
R_BSP_SoftwareDelay(1, OSPI_B_TIME_UNIT);
timeout --;
}
return err;
}
static fsp_err_t ospi_b_erase_operation (uint8_t * const p_address)
{
fsp_err_t err = FSP_SUCCESS;
uint32_t sector_size = RESET_VALUE;
uint32_t erase_timeout = RESET_VALUE;
/* Check sector size according to input address pointer,
described in S28HS512T data sheet
*/
if(OSPI_B_SECTOR_4K_END_ADDRESS < (uint32_t)p_address)
{
sector_size = OSPI_B_SECTOR_SIZE_256K;
erase_timeout = OSPI_B_TIME_ERASE_256K;
}
else
{
sector_size = OSPI_B_SECTOR_SIZE_4K;
erase_timeout = OSPI_B_TIME_ERASE_4K;
}
/* Performs erase sector */
err = R_OSPI_B_Erase(&g_qspi0_flash_ctrl, p_address, sector_size);
/* Wait till operation completes */
err = ospi_b_wait_operation(erase_timeout);
return err;
}
static fsp_err_t ospi_b_write_operation (uint8_t * const p_address,
uint8_t *pdata, uint16_t len)
{
fsp_err_t err = FSP_SUCCESS;
/* Erase sector before write data to flash device */
err = ospi_b_erase_operation(p_address);
/* Write data to flash device */
err = R_OSPI_B_Write(&g_qspi0_flash_ctrl, pdata, p_address, len);
/* Wait until write operation completes */
err = ospi_b_wait_operation(OSPI_B_TIME_WRITE);
return err;
}
static fsp_err_t ospi_b_read_operation (uint8_t * const p_address,uint8_t *pdata, uint16_t len)
{
fsp_err_t err = FSP_SUCCESS;
/* Clean read buffer */
memset(pdata, RESET_VALUE, len);
/* Read data from flash device */
memcpy(pdata, p_address, len);
return err;
}
在main中我们需要先初始化:
void qspi_FlashInit( void )
{
/* Open the OSPI instance. */
fsp_err_t err = R_OSPI_B_Open(&g_qspi0_flash_ctrl, &g_qspi0_flash_cfg);
assert(FSP_SUCCESS == err);
/* Switch OSPI module to 1S-1S-1S mode to configure flash device */
err = R_OSPI_B_SpiProtocolSet(&g_qspi0_flash_ctrl, SPI_FLASH_PROTOCOL_EXTENDED_SPI);
assert(FSP_SUCCESS == err);
/* Reset flash device by driving OM_RESET pin */
R_XSPI->LIOCTL_b.RSTCS0 = 0;
R_BSP_SoftwareDelay(OSPI_B_TIME_RESET_PULSE, OSPI_B_TIME_UNIT);
R_XSPI->LIOCTL_b.RSTCS1 = 1;
R_BSP_SoftwareDelay(OSPI_B_TIME_RESET_SETUP, OSPI_B_TIME_UNIT);
ospi_b_write_enable();
}
然后直接初始化阶段测试QSPI,我们写入一页数据,但是之读取其中的16个,并通过串口打印:
fsp_err_t ospi_b_Testoperation (uint8_t * p_address)
{
fsp_err_t err = FSP_SUCCESS;
uint16_t i = 0;
err = ospi_b_erase_operation(p_address);
err = ospi_b_write_operation (p_address,g_write_data,OSPI_B_APP_DATA_SIZE);
if(err==FSP_SUCCESS)
{
/* Print execution time */
printf("Write %d bytes completed successfully\r\n", (int)(OSPI_B_APP_DATA_SIZE));
}
else
{
printf("Write operation failure\r\n");
}
printf("Write Data:\r\n");
for(i=0;i<=OSPI_B_APP_DATA_SIZE-1;i++)
{
printf("%d ",g_write_data[i]);
}
err = ospi_b_read_operation (p_address,g_read_data,16);
if(err==FSP_SUCCESS)
{
/* Print execution time */
printf("\r\nRead %d bytes completed successfully\r\n", (int)(OSPI_B_APP_DATA_SIZE));
}
else
{
printf("\r\nRead operation failure\r\n");
}
printf("Read Data:\r\n");
for(i=0;i<=sizeof(g_read_data)-1;i++)
{
printf("%d ",g_read_data[i]);
}
/* Compare data read and date written */
if(RESET_VALUE == memcmp(&g_read_data, &g_write_data, (size_t)16))
{
printf("\r\nData read matched data written\r\n");
printf("flash读写数据成功\r\n");
}
else
{
printf("\r\nData read does not match data written\r\n");
printf("flash读写数据失败\r\n");
}
/* Performs OSPI erase operation */
err = ospi_b_erase_operation(p_address);
if(err==FSP_SUCCESS)
{
/* Print execution time */
printf("Erase sector completed successfully\r\n");
}
else
{
printf("erase operation failure\r\n");
}
return err;
}
串口打印结果如下:
|