Arm指令集介绍
崇尚简单粗暴的介绍方式,我们直接来看各个寄存器的大体用法,详细用法可百度,不,谷歌。
1. r0-r3 用作传入函数参数,传出函数返回值。在子程序调用之间,可以将 r0-r3 用于任何用途。被调用函数在返回之前不必恢复 r0-r3。---如果调用函数需要再次使用 r0-r3 的内容,则它必须保留这些内容。2. r4-r11 被用来存放函数的局部变量。如果被调用函数使用了这些寄存器,它在返回之前必须恢复这些寄存器的值。r11 是栈帧指针 fp。3. r12 是内部调用暂时寄存器 ip。它在过程链接胶合代码(例如,交互操作胶合代码)中用于此角色。在过程调用之间,可以将它用于任何用途。被调用函数在返回之前不必恢复 r12。4. 寄存器 r13 是栈指针 sp。它不能用于任何其它用途。sp 中存放的值在退出被调用函数时必须与进入时的值相同。5. 寄存器 r14 是链接寄存器 lr。如果您保存了返回地址,则可以在调用之间将 r14 用于其它用途,程序返回时要恢复6. 寄存器 r15 是程序计数器 pc。它不能用于任何其它用途。
演示代码
假如现在你已经掌握了 arm 指令的用法,即便没有掌握也没关系,“书到用时回头翻”。这里以一段简单的 c 语言为例:
代码语言:javascript
复制
#include .h= ;int (,int b{ int c 0= a ; ;main)= ; int j 5= (i)return ;编译一下,然后反汇编:$ arm-linux-gnueabi-gcc main.c -o main $ arm-linux-gnueabi-objdump -D -D main
代码语言:javascript
复制
<fun: : e52db004 push } (str fp[sp-]) : e28db000 add fp, #10408, sp20 1040c, , #1610410, , #20; 10414, #10418, , #8: e51b2010 ldr r2[fp-] : e51b3014 ldr r3[fp-] 0xffffffec : e0823003 add r3, r3 : e50b3008 str r3[fp-] 1042c, , #810430, r3 : e24bd000 sub sp, #10438{fp; , ]4: e12fff1e bx lr<main: : e92d4800 push , lr10444, sp4 : e24dd008 sub sp, #: e3a03004 mov r34 : e50b300c str r3[fp-] : e3a03005 mov r35 : e50b3008 str r3[fp-] 1045c, , #810460, , #121046410400 > : e1a02000 mov r2: e59f3010 ldr r3[pc16; <main0x4410470, ] : e3a03000 mov r30 : e1a00003 mov r0: e24bd004 sub sp, #10480{fp} : , r2, lsr #如何能让读者接受吸收的更快,我一直觉得按照学习效率来讲的话顺序应该是视频,图文,文字。反正我是比较喜欢视频类的教学。这里给大家画下栈变化的过程是什么样子的。这里的图是结合上面的代码来画的,希望有助于读者的理解。1.程序在内存分布区域
2.全局变量m赋值
3.保存进入main之前的栈底, fp-sp之间是当前函数栈
4.函数main的栈已经准备好了
5.i入栈
6.j入栈
7.准备函数fun的调用, 形参反向入栈 先形参b入栈
8.形参a入栈
9.留空一个地址作为fun返回值, 待后面返回时填入
10.fun返回地址入栈, 通常是main函数当前pc指针的下一个
11.main函数的栈底地址入栈
12.pc指针跳转fun代码
13.c入栈
14.可以看到函数fun的数据 形参a,b 在上一层函数的栈中. 一部分在自己的栈上. 此步取值到加法器中进行加法运算,再赋值给c
15.c赋给返回值,填入上面的留空位置
16.栈底恢复上一层
17.lr赋值给pc, 实现了跳转
18.返回值赋值给全局变量m
19.前面函数调用的形参已经无用,回滚sp
20.函数返回,清理main的栈空间
|