PWM、PPM、PCM、SBUS、XBUS、DSM都是接收机与其他设备通信的协议。
请注意这里不要将遥控器和接收机之间的协议混淆。遥控器和接收机之间会采用某种协议来互相沟通,这些协议往往各个厂牌各自有一套且互不兼容。
但接收机输出的信号是有通行标准的,我们这里讨论的就是接收机输出的信号。
1. PWM协议 PWM(Pulse Width Modulation,脉宽调制),在航模中主要用于舵机的控制。这是一种古老而通用的工业信号,是一种最常见的控制信号。该信号主要原理是通过周期性跳变的高低电平组成方波,来进行连续数据的输出。如下图所示:
而航模常用的PWM信号,其实只使用了它的一部分功能,就是只用到高电平的宽度来进行信号的通信,而固定了周期,并且忽略了占空比参数。 电机(电调)上用到PWM信号种类很多,我们这里对常见的PWM信号特征进行一个描述:
1、 PWM信号是一个周期性的方波信号,周期为20ms,也就是50Hz的刷新频率。 2、 PWM每一周期中的高电平持续时间为1~2ms(1000us~2000us),代表了油门控制量。一般四旋翼中1100us对应0油门,1900us对应满油门 PWM的优势
由于传输过程全部使用满电压传输,非0即1,很像数字信号, 所以他拥有了数字信号的抗干扰能力。 脉宽的调节是连续的,使得它能够传输模拟信号。
PWM信号的发生和采集都非常简单,现在的数字电路则使用计 数的方法产生和采集PWM信号。
信号值与电压无关,这在电压不恒定的条件下非常有用,比如电 池电压会随消耗而降低,DCDC都会存在纹波等等,这些因素不会干扰信号的传输。
PWM因为处理简单,在航模圈至今仍然广泛用以驱动舵机和固定翼飞机的电调等。其相对于PPM等协议最大的不同在于,它每条物理连线里只传输1路信号。换句话说,需要传输几个通道,就需要几组物理连线。
2. PPM(CPPM)协议、PCM协议
PPM(Pulse Position Modulation,脉冲位置调制,又称脉位调制)。下面是PPM协议的波形图:
因为PWM每路只能传输一路信号,在分别直接驱动不同设备的时候(比如固定翼,每路各自驱动不同的舵机和电调)这没有任何问题。但在一些场合,我们并不需要直接驱动设备,而是需要先集中获取接收机的多个通道的值,再做其他用途时, 比如将两个遥控器之间连接起来的教练模式,比如遥控器接电脑玩模拟器,当然还有我们玩多轴,要将接收机的信号传输给飞控时,每个通道一组物理连线的方式就显得非常的繁琐和没有必要。这时候PPM就是救星了。 航模使用的PWM信号,高电平的持续时间在整个时间轴上所占的空间其实是很小的(假设高电平是信号),绝大部分的时间都是空白的。PPM简单的将多个通道的数值一个接一个合并进一个通道,用2个高电平之间的宽度来表示一个通道的值。PPM协议最多传输10个通道,使用一个定时器就可以轻松解决了。因为每一帧信号的尾部必须加入一个足够长的空白(显著超过一个正常PWM信号的宽度)来分隔前后两个信号,每一帧能传输的信号通道最多只能到10个。这在大部分的场合已经足够了,比如刚才说的教练模式/模拟器/多轴等。且PPM是一个通行标准,绝大多数厂牌的遥控/接收都是支持的。PCM(pulse-code modulation,脉冲编码调制,又称脉码调制)。这里顺便提一句,有些航模爱好者误将PPM编码说成是FM,其实这是两个不同的概念。前者指的是信号脉冲的编码方式,后者指的是高频电路的调制方式。 航模遥控器发射电路的工作原理是:通过操纵发射机上的手柄,将电位器阻值的变化信息送入编码电路。编码电路将其转换成一组脉冲编码信号(PPM或PCM)。这组脉冲编码信号经过高频调制电路(AM或FM)调制后,再经功放电路发送出去。PPM的编解码方式一般是使用积分电路来实现的,而PCM编解码则是用模/数(A/D)和数/模(D/A)转换技术实现的。 航模遥控器中最常用的两种脉冲编码方式就是PPM和PCM; 最常用的两种高频调制方式是FM调频和AM调幅; 最常见的组合为PPM/AM脉位调制 编码/调幅、PPM/FM脉位调制编码/调频、PPM/FM脉冲调只编码/调频三种形式。通常的PPM接收解码电路都由通用的数字集成电路组成,如 CD4013,CD4015等。对于这类电路来说,只要输入脉冲的上升沿达到一定的高度,都可以使其翻转。这样,一旦输入脉冲中含有干扰脉冲,就会造成输 出混乱。由于干扰脉冲的数量和位置是随机的,因此在接收机输出端产生的效果就是“抖舵”。除此之外,因电位器接触不好而造成编码波形的畸变等原因,也会影 响接收效果,造成“抖舵”。对于窄小的干扰脉冲,一般的PPM电路可以采用滤波的方式消除;而对于较宽的干扰脉冲,滤波电路就无能为力了。这就是为什么普 通的PPM比例遥控设备,在强干扰的环境下或超出控制范围时会产生误动作的原因。尤其是在有同频干扰的情况下,模型往往会完全失控。 3. SBUS(S-BUS/S.BUS)SBUS(Serial Bus,串行总线)。SBUS:每11个位(bit)表示一个通道数值的协议,串口通信,但是sbus的接收机通常是反向电平,连接到四轴飞行器时需要接电平反向器,大部分支持sbus的飞行控制板已经集成了反向器,直接将以接收机连接到飞行控制器即可。XBUS:常规通信协议,支持18个通道,数据包较大,串口通信有两种模式,可以在遥控器的配置选项中配置。接收机无需做特殊配置。SBUS是一个串行通信协议,最早由日本厂商FUTABA(扶他爸~)引入,随后FrSky的很多接收机也开始支持,S.BUS是全数字化接口总线,数字化是指的该协议使用现有数字通信接口作为通信的硬件协议,使用专用的软件协议,这使得该设备非常适合在单片机系统中使用,也就是说适合与飞控连接。这也就是我为什么要将这个协议详细叙述的原因。总线是指他可以连接多个设备,这些设备通过一个Hub与这个总线相连,得到各自的控制信息。 SBUS使用RS232C串口的硬件协议作为自己的硬件运行基础。 使用TTL电平,即3.3V。 使用负逻辑,即低电平为“1”,高电平为“0”。 采用100K的波特率(注意:不兼容波特率115200),8位数据位,两位停止位,偶效验,即8E2的串口通信。 SBUS是一个接收机串行总线的输出,通过这根总线,可以获得遥控器上所有通道的数据。目前很多模型及四轴飞行器电子设备都支持SBUS总线的接入。使用SBUS总线获取通道数据,效率高,而且节省硬件资源,只需要一根线即可获取所有通道的数据。 SBUS一帧数据的长度为25个字节:字节[0]:SBUS头,0x0F字节[1-22]:16个伺服通道,每个伺服通道采用11位编码字节[23]: 位7:数字通道17(0x80) 位6:数字通道18(0x40) 位5:丢帧(0x20) 位4:用来激活故障安全(0x10) 位0-3:n/a字节[24]:SBUS结束字节,0x00 具体协议的格式如下: [数据头] [第一个字节] [第二个字节] ......[第二十二的字节] [标志位] [数据尾]数据头、标志位、数据尾 不携带信息,而且数据头和数据尾是固定的,数据头=0x0f; 数据尾=0x00; 数据头(1字节)+数据(22字节)+标志位(1字节)+数据尾(1字节) SBUS的每个RC通道值映射为:-100%= 173(相当于PWM伺服信号中的1000)0%= 992(相当于PWM伺服信号中的1500)100%= 1811(相当于PWM伺服信号中的2000) 值得注意的有三点:(1)SBUS采用负逻辑,所以无论接收还是发送都要进行硬件取反(注意,一定要硬件取反),电路如下:
STM32F0芯片内置了反相电路,所以芯片外围不用加。
(2)SBUS有两种模式,
a.高速模式:每4ms发送一次
b.低速模式:每14ms发送一次
就是说每间隔4或者14ms这个串口就发送25个字节的数据,这25个字节的数据最多可以包含16个信息。
(3)100K的波特率不是标准波特率,一般串口工具都不能直接读取(所以不要直接用电脑调试,除非你的电脑写好了非标准串口),可以用单片机读取。
编码原理
一个信息是二进制的11bit,比如1111 1111 111就可以表示一个信息,一共16个这样的信息,按照顺序将这16个信息依次排成一串,得到一个176bit(11 *16)的数据,也就是22字节(176 / 8 = 22)的数据,再加上数据头数据尾校验位就组成了一个要通过串口传送的信息。每隔4或者14ms就传送一个这样的信息。
所以这16个信息每一个所能表示的最大值是2^11 = 2048,也就是他的精度。
标志位的高四位有特殊含义,第四位并没有使用,依照我的理解,第七位和第六位表示两个数字通道(通道17和18)信息(就是只有高低电平的通道,一般用来控制通断或者某个电机简单的启动或者停止,比如1表示启动电机0表示停止电机)。第五位表示帧丢失,接收机红色LED亮起,如果这一位为1,表示这一帧信号出问题了,接收机红色LED亮起。第四位表示故障保护激活,意思应该是说如果这一位为1,激活接受方故障保护。
bit7 = ch17 = digital channel (0x80) bit6 = ch18 = digital channel (0x40) bit5 = Frame lost, equivalent red LED on receiver (0x20) bit4 = failsafe activated (0x10) bit3 = n/a bit2 = n/a bit1 = n/a bit0 = n/a
|