开发板 :RK3588 EVB开发板
eMMC :256GB
LPDDR4 :16GB
显示屏 :10.1英寸HDMI接口显示屏
u-boot :2017.09
linux :6.1
----------------------------------------------------------------------------------------------------------------------------
在前面的文章我们对Rockhip Linux SDK进行了深入分析,其中涉及到了SDK编译过程、编译源码,具体可以参考:
Rockchip RK3588 - Rockchip Linux SDK编译;(如需要此文档的可以联系博主获取)
Rockchip RK3588 - Rockchip Linux SDK Buildroot文件系统构建;(如需要此文档的可以联系博主获取)
Rockchip RK3588 - Rockchip Linux SDK脚本分析。(如需要此文档的可以联系博主获取)
此外,我们还是深入分析了Recovery模式下的系统升级功能,具体可参考:
Rockchip RK3588 - Rockchip Linux Recovery updateEngine源码分析;(如需要此文档的可以联系博主获取)
Rockchip RK3588 - Rockchip Linux Recovery updateEngine测试。 (如需要此文档的可以联系博主获取)
接下来我们将尝试在RK3588开发板实现系统升级功能,当然我们还期望当根文件系统损坏时,开发板能够通过按住GPIO口进入到recovery系统恢复正常系统。
一、uboot启动方式
既然要实现在开发板实现系统升级功能,我们就需要了解uboot启动内核的方式,并制作以下分区镜像;
misc.img:misc分区是一个没有文件系统的分区,用于存放一些引导配置参数;
recovery.img:由kernel + dtb + ramdisk组成,主要用于升级操作;
uboot会根据misc分区存放的字段来判断将要引导的系统是normal系统还是recovery系统。
1.1 系统固件
我们使用的是RK3588开发板,这里我们就去下载官方提供的固件
这里我们选择debian-bullseye-desktop-arm64-images.tgz作为测试使用的镜像文件,将debian-bullseye-desktop-arm64-images.tgz(位于"�3_分区镜像文件"目录下,以实际下载的文件为准)拷贝到/work/sambashare/rk3588/friendly/sd-fuse_rk3588目录下;
root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# ll debian*
-rwxrw-rw- 1 root root 1590466719 Dec 3 01:49 debian-bullseye-desktop-arm64-images.tgz*
-rwxrw-rw- 1 root root 75 Nov 18 19:05 debian-bullseye-desktop-arm64-images.tgz.hash.md5*
root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# tar -xvzf debian-bullseye-desktop-arm64-images.tgz
解压得到debian-bullseye-desktop-arm64文件夹;
root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# ll debian-bullseye-desktop-arm64
-rw-r--r-- 1 root root 8072140 May 28 2023 boot.img
-rw-r--r-- 1 root root 1424 May 28 2023 dtbo.img
-rw-r--r-- 1 root root 307200 Sep 8 23:33 idbloader.img
-rw-r--r-- 1 root root 64 Nov 17 10:03 info.conf
-rw-r--r-- 1 root root 35551252 Nov 16 16:17 kernel.img
-rw-r--r-- 1 root root 471488 Sep 8 23:33 MiniLoaderAll.bin
-rw-r--r-- 1 root root 49152 May 28 2023 misc.img
-rw-r--r-- 1 root root 470 Nov 17 10:03 parameter.txt
-rw-r--r-- 1 root root 6227456 Nov 16 16:17 resource.img
-rw-r--r-- 1 root root 3992675220 Nov 17 10:03 rootfs.img
-rw-r--r-- 1 root root 4194304 Sep 8 23:33 uboot.img
-rw-r--r-- 1 root root 159868 Nov 17 10:03 userdata.img
可以看到解压的文件已经包含了misc.img,但是并没有recovery.img。
1.1.1 系统分区介绍
parameter.txt保存着分区信息:
FIRMWARE_VER: 12.0
MACHINE_MODEL: RK3588
MACHINE_ID: 007
MANUFACTURER: RK3588
MAGIC: 0x5041524B
ATAG: 0x00200800
MACHINE: NanoPi6
CHECK_MASK: 0x80
PWR_HLD: 0,0,A,0,1
TYPE: GPT
CMDLINE: mtdparts=rk29xxnand:0x00002000@0x00004000(uboot),0x00002000@0x00006000(misc),0x00002000@0x00008000(dtbo),0x00008000@0x0000a000(resource),0x00014000@0x00012000(kernel),0x00010000@0x00026000(boot),0x00010000@0x00036000(recovery),0x007c0000@0x00046000(rootfs),-@0x00806000(userdata:grow)
解析信息如下:
其中:
uboot分区:供uboot编译出来的uboot.img;
misc分区:引导参数分区,供misc.img,给recovery使用;
dtbo::供kernel编译出来的dtbo.img;
resource:资源分区,由设备树、图片资源文件组成,不包含内核;
boot:供kernel编译出来的boot.img(可能是FIT uImage镜像格式,也有可能是Android bootimg镜像格式);
kernel:供kernel编译出来的kernel.img(由tools/mkkrnlimg工具编译内核镜像Image文件得到);
recovery分区:供recovery编译出的recovery.img(kernel + dtb + ramdisk);
rootfs分区:供buildroot、debian或yocto编出来的rootfs.img;
userdata分区:供APP临时生成文件或给最终用户使用,挂载在/userdata目录下。
从上面我们可以看到这里有两个分区时存放了内核镜像,分别是boot和kernel,那问题来了,uboot启动到底使用的是哪个内核呢?
1.1.2 生成统一固件
将debian-bullseye-desktop-arm64目录下的镜像文件重新打包成SD卡固件:
root@@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# sudo ./mk-sd-image.sh debian-bullseye-desktop-arm64/
Creating RAW image: out/rk3588-sd-debian-bullseye-desktop-6.1-arm64-20240714.img (7800 MB)
---------------------------------
记录了0+0 的读入
记录了0+0 的写出
0字节已复制,0.0001181 s,0.0 kB/s
----------------------------------------------------------------
[out/rk3588-sd-debian-bullseye-desktop-6.1-arm64-20240714.img] capacity = 7438MB, 7799999488 bytes
current out/rk3588-sd-debian-bullseye-desktop-6.1-arm64-20240714.img partition:
----------------------------------------------------------------
parsing ./debian-bullseye-desktop-arm64//parameter.txt:
create new GPT 9:
----------------------------------------------------------------
copy from: ./debian-bullseye-desktop-arm64 to out/rk3588-sd-debian-bullseye-desktop-6.1-arm64-20240714.img
[RAW. 0]: 300 KB | ./debian-bullseye-desktop-arm64/idbloader.img > 100% : done.
[RAW. 1]: 4096 KB | ./debian-bullseye-desktop-arm64/uboot.img > 100% : done.
[RAW. 2]: 48 KB | ./debian-bullseye-desktop-arm64/misc.img > 100% : done.
[RAW. 3]: 1 KB | ./debian-bullseye-desktop-arm64/dtbo.img > 100% : done.
[RAW. 4]: 2518 KB | ./debian-bullseye-desktop-arm64/resource.img > 100% : done.
[RAW. 5]: 34590 KB | ./debian-bullseye-desktop-arm64/kernel.img > 100% : done.
[RAW. 6]: 7882 KB | ./debian-bullseye-desktop-arm64/boot.img > 100% : done.
[RAW. 8]: 3907280 KB | ./debian-bullseye-desktop-arm64/rootfs.img > 100% : done.
[RAW. 9]: 156 KB | ./debian-bullseye-desktop-arm64/userdata.img > 100% : done.
----------------------------------------------------------------
---------------------------------
RAW image successfully created (21:09:10).
-rw-r--r-- 1 root root 7799999488 7月 14 21:09
该sh脚本内部调用了Rockchip官方提供的打包工具sd_update生成的统一固件,由于打包工具并不开源,所以无法研究源码。
不过我们大致可以猜测出应该就是做了一个镜像文件,然后按照parameter.txt进行划分分区,并将各个分区镜像依次烧录进去。
View Code
1.1.3 制作
SD
启动卡
我们将SD卡插入PC上,在虚拟机ubuntu中运行demsg查看新接入的设备;
[36809.524292] usb 2-1: USB disconnect, device number 2
[36813.382382] usb 2-1: new high-speed USB device number 3 using ehci-pci
[36813.657882] usb 2-1: New USB device found, idVendor=14cd, idProduct=1212, bcdDevice= 1.00
[36813.657887] usb 2-1: New USB device strings: Mfr=1, Product=3, SerialNumber=2
[36813.657889] usb 2-1: Product: Mass Storage Device
[36813.657890] usb 2-1: Manufacturer: Generic
[36813.657891] usb 2-1: SerialNumber: 121220160204
[36813.660529] usb-storage 2-1:1.0: USB Mass Storage device detected
[36813.661135] scsi host33: usb-storage 2-1:1.0
[36814.676011] scsi 33:0:0:0: Direct-Access Mass Storage Device 1.00 PQ: 0 ANSI: 0 CCS
[36814.677119] sd 33:0:0:0: Attached scsi generic sg2 type 0
[36814.681851] sd 33:0:0:0: [sdb] 62333952 512-byte logical blocks: (31.9 GB/29.7 GiB)
[36814.685829] sd 33:0:0:0: [sdb] Write Protect is off
[36814.685833] sd 33:0:0:0: [sdb] Mode Sense: 03 00 00 00
[36814.690127] sd 33:0:0:0: [sdb] No Caching mode page found
[36814.690132] sd 33:0:0:0: [sdb] Assuming drive cache: write through
[36814.713610] sdb: sdb1
[36814.714055] sd 33:0:0:0: [sdb] Attached SCSI removable disk
可以看到SD卡对应的设备节点为/dev/sdb,对应1个分区sdb1;
root@@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# sudo ls /dev/sdb*
/dev/sdb /dev/sdb1
root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# df -hT
文件系统 类型 容量 已用 可用 已用% 挂载点
udev devtmpfs 3.9G 0 3.9G 0% /dev
tmpfs tmpfs 791M 3.6M 787M 1% /run
/dev/sda5 ext4 98G 69G 24G 75% /
tmpfs tmpfs 3.9G 0 3.9G 0% /dev/shm
tmpfs tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpfs tmpfs 3.9G 0 3.9G 0% /sys/fs/cgroup
/dev/sda1 vfat 511M 4.0K 511M 1% /boot/efi
/dev/loop15 squashfs 497M 497M 0 100% /snap/gnome-42-2204/132
tmpfs tmpfs 791M 0 791M 0% /run/user/0
tmpfs tmpfs 791M 36K 791M 1% /run/user/1000
/dev/sdc2 ext4 11G 311M 9.8G 4% /media/zhengyang/userdata
/dev/sdc1 ext4 4.5G 4.4G 35M 100% /media/zhengyang/rootfs
开始制作SD启动卡:
root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# sudo dd if=out/rk3588-sd-debian-bullseye-desktop-6.1-arm64-20240714.img of=/dev/sdb bs=4M status=progress
1.2 uboot环境变量
将SD卡插入到开发板,并使用准备好的USB转串口适配器和连接线(需另购),连接开发板,给开发板上电。在启动过程中按下CTRL+C进入uboot命令行模式;
View Code
1.2.1 启动命令行
查看内核启动命令;
=> print bootcmd
bootcmd=boot_fit;boot_android ${devtype} ${devnum};bootrkp;run distro_bootcmd;
1.2.2 启动参数
查看内核启动参数:
=> pri bootargs
bootargs=storagemedia=sd androidboot.storagemedia=sd androidboot.mode=normal androidboot.dtbo_idx=1
1.2.3 资源文件
uboot查看资源文件:
# 切换到SD卡所属设备
==> mmc dev 1
switch to partitions #0, OK
mmc1 is current device
==> mmc info
Device: mmc@fe2c0000
Manufacturer ID: 3
OEM: 5344
Name: SD32G
Timing Interface: Legacy
Tran Speed: 52000000
Rd Block Len: 512
SD version 3.0
High Capacity: Yes
Capacity: 29.7 GiB
Bus Width: 4-bit
Erase Group Size: 512 Bytes
# 从resource分区读取20个扇区数据
==> mmc read 0x10000000 0xa000 20
MMC read: dev # 1, block # 40960, count 32 ... 32 blocks read: OK
# 查看前两个扇区数据
==> md.b 0x10000000 0x400
10000000: 52 53 43 45 00 00 00 00 01 01 01 00 18 00 00 00 RSCE............
10000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
......
10000200: 45 4e 54 52 72 6b 33 33 39 39 2d 6e 61 6e 6f 70 ENTRrk3399-nanop
10000210: 69 34 2d 72 65 76 30 30 2e 64 74 62 00 00 00 00 i4-rev00.dtb....
10000220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
......
100002e0: 02 8a cd 4f a8 69 32 dd d0 bd de 09 34 59 ad 6e ...O.i2.....4Y.n
100002f0: 7d 42 d6 ac 00 00 00 00 00 00 00 00 00 00 00 00 }B..............
......
这里我们读取resource分区的数据,也就是resource.img镜像,可以看到以上输出内容中包含了设备树文件的数据。
1.2.4 设备树
查看设备树:
=> print dtb_name
dtb_name=rk3588-nano0pi6-rev01.dtb
1.3 启动内核
当我们在uboot命令行执行了boot命令时,uboot会获取bootcmd环境变量的内容,然后执行bootcmd中保存的启动命令。
接下来我们来分析一下bootcmd默认配置,在默认环境变量default_environment(位于uboot-rockchip/include/env_default.h)中定义有,其内容大致如下:
const uchar default_environment[] = {
"bootcmd=" CONFIG_BOOTCOMMAND "�"
"bootdelay=" __stringify(CONFIG_BOOTDELAY) "�"
"baudrate=" __stringify(CONFIG_BAUDRATE) "�"
"ipaddr=" __stringify(CONFIG_IPADDR) "�"
"serverip=" __stringify(CONFIG_SERVERIP) "�"
"netmask=" __stringify(CONFIG_NETMASK) "�"
......
#ifdef CONFIG_EXTRA_ENV_SETTINGS
CONFIG_EXTRA_ENV_SETTINGS
#endif
"�"
};
默认启动命令CONFIG_BOOTCOMMAND定义在uboot-rockchip/include/configs/nanopi6.h,该文件存放着开发板配置信息,被uboot-rockchip/include/config.h文件引入。
#include < configs/rk3588_common.h >
/* Remove or override few declarations from rk3588-common.h */
#undef CONFIG_BOOTCOMMAND
#undef CONFIG_DISPLAY_BOARDINFO_LATE
#undef RKIMG_DET_BOOTDEV
#undef RKIMG_BOOTCOMMAND
#define CONFIG_SYS_MMC_ENV_DEV 0
#define CONFIG_SYS_MMC_MAX_BLK_COUNT 32768
#define CONFIG_MISC_INIT_R
#define CONFIG_SERIAL_TAG
#ifndef CONFIG_SPL_BUILD
#define ROCKCHIP_DEVICE_SETTINGS
"stdout=serial,vidconsole�"
"stderr=serial,vidconsole�"
#define RKIMG_DET_BOOTDEV
"rkimg_bootdev="
"if mmc dev 1 && rkimgtest mmc 1; then "
"setenv devtype mmc; setenv devnum 1; echo Boot from SDcard;"
"elif mmc dev 0; then "
"setenv devtype mmc; setenv devnum 0;"
"elif rksfc dev 1; then "
"setenv devtype spinor; setenv devnum 1;"
"fi; �"
#define RKIMG_BOOTCOMMAND
"boot_fit;"
"boot_android ${devtype} ${devnum};"
"bootrkp;"
"run distro_bootcmd;"
#define CONFIG_BOOTCOMMAND RKIMG_BOOTCOMMAND
#endif
这里引入了uboot-rockchip/include/configs/rk3588_common.h,而该文件又引入了uboot-rockchip/include/configs/rockchip-common.h。
这里支持了内核的4种引导方式:
boot_fit:从eMMC中boot/recovery分区(如果进入的是normal系统,则为boot分区;如果进入的是recovery系统,则为recovery分区)加载FIT uImage镜像文件(通常由kernel + dtb + ramdisk组成)到内存,然后启动内核 ;
boot_android:启动Android内核镜像;
bootrkp:通常用于Rockchip平台上的特定启动操作,可能用于启动特定的固件或者特殊的操作模式;
distro_bootcmd:运行uboot环境中定义的 distro_bootcmd,这是一个uboot环境变量,通常包含了一系列的启动命令,比如尝试从网络引导、从存储设备引导等;
其中boot_fit、distro_bootcmd启动方式我们在《 Rockchip RK3399 - 移植linux 5.2.8》中有过介绍。
1.3.1 内核启动日志
输入boot命令启动内核:
=> boot
## Booting FIT Image FIT: No fit blob # 命令boot_fit
FIT: No FIT image
ANDROID: reboot reason: "(none)" # 命令boot_android
Not AVB images, AVB skip
No valid android hdr
Android image load failed
Android boot failed, error -1.
## Booting Rockchip Format Image # 命令bootrkp
fdt
@ 0x08300000 (0x000421b2) # fdt加载到内存的地址
kernel @ 0x00400000 (0x021c7808) # kernel加载到内存的地址
ramdisk @ 0x0a200000 (0x007b2bc0) # ramdisk加载到内存的地址
Fdt Ramdisk skip relocation
## Flattened Device Tree blob at 0x08300000
Booting using the fdt blob at 0x08300000
Using Device Tree in place at 0000000008300000, end 00000000083451b1
## reserved-memory:
cma: addr=10000000 size=8000000
drm-**@00000000: addr=edf00000 size=468000
vendor-storage-rm@00000000: addr=ebcd3000 size=10000
ramoops@110000: addr=110000 size=e0000
Adding bank: 0x00200000 - 0x08400000 (size: 0x08200000)
Adding bank: 0x09400000 - 0xf0000000 (size: 0xe6c00000)
Adding bank: 0x100000000 - 0x3fc000000 (size: 0x2fc000000)
Adding bank: 0x3fc500000 - 0x3fff00000 (size: 0x03a00000)
Adding bank: 0x4f0000000 - 0x500000000 (size: 0x10000000)
Total: 10246.299/11135.828 ms
Starting kernel ...
[ 11.146608] Booting Linux on physical CPU 0x0000000000 [0x412fd050]
[ 11.146631] Linux version 6.1.25 (root@ubuntu) (aarch64-linux-gnu-gcc (Ubuntu 10.5.0-1ubuntu1~20.04) 10.5.0, GNU ld (GNU Binutils for Ubuntu) 2.34) #1 SMP Wed Dec 27 21:53:18 CST 2023
[ 11.153743] Machine model: FriendlyElec NanoPC-T6
......
[ 11.510154] Kernel command line: storagemedia=sd androidboot.storagemedia=sd androidboot.mode=normal androidboot.dtbo_idx=1 androidboot.verifiedbootstate=orange earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0 coherent_pool=1m irqchip.gicv3_pseudo_nmi=0 rw root=/dev/mmcblk0p8 rootfstype=ext4 data=/dev/mmcblk0p9 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1
......
Debian GNU/Linux 11 NanoPC-T6 ttyFIQ0
NanoPC-T6 login: [ 20.885195] systemd-journald[409]: File /var/log/journal/b9164042f80842f6968af54e1d15c9af/user-1000.journal corrupted or uncleanly shut down, renaming and replacing.
[ 21.783657] rk_hdmirx fdee0000.hdmirx-controller: hdmirx_audio_startup: device is no connected or audio is off
[ 26.433687] platform mtd_vendor_storage: deferred probe pending
NanoPC-T6 login:
(1) 首先执行boot_fit命令,对于FIT uImage,其中地址范围0x00000000~0x00000027表示的是fdt_header结构体的成员信息。
因此会调用fit_get_blob函数获取boot/recovery分区(如果进入的是normal系统,则获取boot分区;如果进入的是recovery系统,则获取recovery分区)第一个扇区数据,并对fdt_header结构体进行校验判断是不是FIT uImage。
由于正常情况下我们进入的是normal系统,则从boot分区加载boot.img数据,从输出的日志信息可以看出我们烧录的boot.img并不是FIT uIamge。
(2) 接着执行boot_android命令,从输出日志可以看到应该也是引导失败了。
(3) 执行bootrkp命令。
(4) 执行distro_bootcmd命令。
有关bootrkp和distro_bootcmd启动方式,我们接下来详细介绍。
1.3.2 加载命令行
不知道你有没有留意内核启动输出命令行信息;
[ 11.510154] Kernel command line: storagemedia=sd androidboot.storagemedia=sd androidboot.mode=normal androidboot.dtbo_idx=1 androidboot.verifiedbootstate=orange earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0 coherent_pool=1m irqchip.gicv3_pseudo_nmi=0 rw root=/dev/mmcblk0p8 rootfstype=ext4 data=/dev/mmcblk0p9 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1
这里输出的信息为啥和bootargs环境变量以及arch/arm64/boot/dts/rockchip/rk3588-nanopi6-common.dtsi内容不一样呢?
=> pri bootargs
bootargs=storagemedia=sd androidboot.storagemedia=sd androidboot.mode=normal androidboot.dtbo_idx=1
# 设备树设备节点内容
chosen: chosen {
bootargs = "earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0 coherent_pool=1m irqchip.gicv3_pseudo_nmi=0";
};
那么我们不得不介绍内核启动后是如何获取到启动参数。对于ARM64来说,uboot在启动内核时会将r2设置为dtb文件的开始地址。
1.3.2.1 内核
bootargs
来源
对于开发板开发板而言,r2设置为了rk3588-nanopi6-rev01.dtb加载到内存的地址。
这里我们直接从内核start_kernel函数开始说起,其位于init/main.c文件,函数调用栈如下;
#char __initdata boot_command_line[COMMAND_LINE_SIZE]; // 全局变量,定义在init/main.c
start_kernel() // init/main.c
char *command_line;
.......
setup_arch(&command_line); // arch/arm64/kernel/setup.c
......
*cmdline_p = boot_command_line;
......
// __fdt_pointer:dtb所在的物理地址,由bootloader通过x0寄存器传递过来
setup_machine_fdt(__fdt_pointer); // arch/arm64/kernel/setup.c
// 返回dtb所在的虚拟地址dt_virt
void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL)
if (!dt_virt || !early_init_dt_scan(dt_virt)) {
........
}
name = of_flat_dt_get_machine_name();
pr_info("Machine model: %sn", name);
machine_desc = mdesc;
......
这里我们重点关注early_init_dt_scan函数,early_init_dt_scan主要是对dtb进行早期的扫描工作,下面是简要介绍函数的调用流程和实现细节:
early_init_dt_scan(dt_virt) // drivers/of/fdt.c
// 对dtb头进行检查
early_init_dt_verify(dt_virt)
early_init_dt_scan_nodes() // 遍历设备树的节点,解析出重要的信息用于内核启动
/* Retrieve various information from the /chosen node */
of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
/* Initialize {size,address}-cells info */
of_scan_flat_dt(early_init_dt_scan_root, NULL);
/* Setup memory, calling early_init_dt_add_memory_arch */
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
of_scan_flat_dt对dtb里面的所有节点进行扫描,用提供的回调函数循环处理节点信息,回调函数返回0继续扫描,返回非0结束扫描,当扫描到最后一个节点也会结束扫描;
/**
* of_scan_flat_dt - scan flattened tree blob and call callback on each.
* @it: callback function
* @data: context data pointer
*
* This function is used to scan the flattened device-tree, it is
* used to extract the memory information at boot before we can
* unflatten the tree
*/
int __init of_scan_flat_dt(int (*it)(unsigned long node,
const char *uname, int depth,
void *data),
void *data)
{
//dtb数据的地址,也就是根节点的地址
const void *blob = initial_boot_params;
const char *pathp;
int offset, rc = 0, depth = -1;
if (!blob)
return 0;
// 从根节点遍历dtb中每个节点,返回的offset就是每个节点的地址
// offset:表示节点的地址相对于根节点的偏移量,也是节点数据所在地址
// depth:代表节点相对于根节点的深度,比如根节点深度是0,/chosen节点是1
for (offset = fdt_next_node(blob, -1, &depth);
offset >= 0 && depth >= 0 && !rc;
offset = fdt_next_node(blob, offset, &depth)) {
// 解析出节点名称
pathp = fdt_get_name(blob, offset, NULL);
if (*pathp == '/')
pathp = kbasename(pathp);
// 回调函数解析节点,it是传递进来的设备树节点的解析函数,需要解析什么消息就传递进来相应的节点解析函数
rc = it(offset, pathp, depth, data);
}
return rc;
}
early_init_dt_scan_chosen用于扫描chosen节点,并把bootargs属性值拷贝到boot_command_line中,如果内核定义了CONFIG_CMDLINE这个宏,则把配置的命令行参数也拷贝到boot_command_line;
/*
* Convert configs to something easy to use in C code
*/
#if defined(CONFIG_CMDLINE_FORCE)
static const int overwrite_incoming_cmdline = 1;
static const int read_dt_cmdline;
static const int concat_cmdline;
#elif defined(CONFIG_CMDLINE_EXTEND)
static const int overwrite_incoming_cmdline;
static const int read_dt_cmdline = 1;
static const int concat_cmdline = 1;
#else /* CMDLINE_FROM_BOOTLOADER */ // 走这里
static const int overwrite_incoming_cmdline;
static const int read_dt_cmdline = 1;
static const int concat_cmdline;
#endif
#ifdef CONFIG_CMDLINE
static const char *config_cmdline = CONFIG_CMDLINE;
#else
static const char *config_cmdline = "";
#endif
int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
int depth, void *data)
{
int l = 0;
const char *p = NULL;
char *cmdline = data; // 即boot_command_line
const void *rng_seed;
pr_debug("search "chosen", depth: %d, uname: %sn", depth, uname);
// 节点的深度要为1,数据不能使NULL,同时节点名字是"chosen"或者"chosen@0"
if (depth != 1 || !cmdline ||
(strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
return 0;
// 解析initrd相关
early_init_dt_check_for_initrd(node);
/* Put CONFIG_CMDLINE in if forced or if data had nothing in it to start */
if (overwrite_incoming_cmdline || !cmdline[0]) // 进入
strlcpy(cmdline, config_cmdline, COMMAND_LINE_SIZE);
/* Retrieve command line unless forcing */
if (read_dt_cmdline) // 从chosen节点中解析出bootargs属性
p = of_get_flat_dt_prop(node, "bootargs", &l);
if (p != NULL && l > 0) {
if (concat_cmdline) {
int cmdline_len;
int copy_len;
strlcat(cmdline, " ", COMMAND_LINE_SIZE);
cmdline_len = strlen(cmdline);
copy_len = COMMAND_LINE_SIZE - cmdline_len - 1;
copy_len = min((int)l, copy_len);
strncpy(cmdline + cmdline_len, p, copy_len);
cmdline[cmdline_len + copy_len] = '�';
} else { // 追加bootargs参数到boot_command_line
strlcpy(cmdline, p, min((int)l, COMMAND_LINE_SIZE));
}
}
pr_debug("Command line is: %sn", (char*)data);
rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
if (rng_seed && l > 0) {
add_bootloader_randomness(rng_seed, l);
/* try to clear seed so it won't be found. */
fdt_nop_property(initial_boot_params, node, "rng-seed");
/* update CRC check value */
of_fdt_crc32 = crc32_be(~0, initial_boot_params,
fdt_totalsize(initial_boot_params));
}
/* break now */
return 1;
}
如果想查看内核debug级别日志可以配置:
# arch/arm64/configs/nanopi6_linux_defconfig
Kernel hacking --->
printk and dmesg options --->
(8) Default console loglevel (1-15) # CONFIG_CONSOLE_LOGLEVEL_DEFAULT
# 修改drivers/of/fdt.c 即在需要输出debug级别日志的文件头部定义如下宏
#define DEBUG
通过追加日志,我们重新编译并烧录会发现启动命令行的确是如下这个内容:
[ 0.000000] OF: fdt: search "chosen", depth: 1, uname: chosen
[ 0.000000] OF: fdt: Looking for initrd properties...
[ 0.000000] OF: fdt: initrd_start=0xa200000 initrd_end=0xa9b2bc0
[ 0.000000] OF: fdt: Command line is: storagemedia=sd androidboot.storagemedia=sd androidboot.mode=normal androidboot.dtbo_idx=1 androidboot.verifiedbootstate=orange earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0 coherent_pool=1m irqchip.gicv3_pseudo_nmi=0 rw root=/dev/mmcblk0p8 rootfstype=ext4 data=/dev/mmcblk0p9 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1
1.3.2.2
dtb
中
bootargs
来源
实际上dtb中的bootargs的来源有如下几种;
内核启动参数bootargs保存在dts的chosen节点的bootargs属性,这里就是arch/arm64/boot/dts/rockchip/rk3588-nanopi6-common.dtsi这个设备树源文件;
bootargs数据可以是在dts源文件中定义,也可以是uboot启动内核时传递给内核;
其中uboot传递的bootargs参数优先级高于设备树中定义的bootargs,如果是uboot传递的bootargs,在内核启动阶段就会调用fdt_chosen函数将环境变量中的bootargs参数写进dtb数据中;
既然uboot传递了bootargs参数,那么内核将会使用uboot传递过来的bootargs参数,不过该参数为何和内核启动输出的不太一样呢?为此我们不得不去研究bootrkp启动是否追加了启动参数;
boot_rockchip_image(dev_desc, &part) // bootrkp启动方式
......
// 设置内核加载地址(Image镜像)
images.ep = kernel_addr_r;
images.initrd_start = ramdisk_addr_r;
images.initrd_end = ramdisk_addr_r + ramdisk_size;
// 设置设备树加载地址
images.ft_addr = (void *)fdt_addr_r;
// 设备树长度
images.ft_len = fdt_totalsize(fdt_addr_r);
do_bootm_linux(0, 0, NULL, &images); // arch/arm/lib/bootm.c
boot_prep_linux(images); // arch/arm/lib/bootm.c
image_setup_linux(images) // common/image.c
ulong of_size = images->ft_len;
char **of_flat_tree = &images->ft_addr;
struct lmb *lmb = &images->lmb;
boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree);
boot_get_cmdline(lmb, &images->cmdline_start,
&images->cmdline_end);
boot_relocate_fdt(lmb, of_flat_tree, &of_size);
image_setup_libfdt(images, *of_flat_tree, of_size, lmb); // common/image-fdt.c
......
......
# 可以通过如下代码输出启动参数
char *commandline = env_get("bootargs");
printf("%s %d:%sn", __func__, __LINE__, commandline);
重点关注image_setup_libfdt,定义在common/image-fdt.c;
int image_setup_libfdt(bootm_headers_t *images, void *blob,
int of_size, struct lmb *lmb)
{
ulong *initrd_start = &images->initrd_start;
ulong *initrd_end = &images->initrd_end;
int ret = -EPERM;
int fdt_ret;
// 进行架构特定的设备树修正
if (arch_fixup_fdt(blob) < 0) {
printf("ERROR: arch-specific fdt fixup failedn");
goto err;
}
#if defined(CONFIG_PASS_DEVICE_SERIAL_BY_FDT) // 定义
// 配置根节点
if (fdt_root(blob) < 0) {
printf("ERROR: root node setup failedn");
goto err;
}
#endif
// 创建/chosen节点
if (fdt_chosen(blob) < 0) {
printf("ERROR: /chosen node create failedn");
goto err;
}
/* Update ethernet nodes */
fdt_fixup_ethernet(blob);
if (IMAGE_OF_BOARD_SETUP) {
fdt_ret = ft_board_setup(blob, gd- >bd);
if (fdt_ret) {
printf("ERROR: board-specific fdt fixup failed: %sn",
fdt_strerror(fdt_ret));
goto err;
}
}
if (IMAGE_OF_SYSTEM_SETUP) {
fdt_ret = ft_system_setup(blob, gd->bd);
if (fdt_ret) {
printf("ERROR: system-specific fdt fixup failed: %sn",
fdt_strerror(fdt_ret));
goto err;
}
}
/* Delete the old LMB reservation */
if (lmb)
lmb_free(lmb, (phys_addr_t)(u32)(uintptr_t)blob,
(phys_size_t)fdt_totalsize(blob));
ret = fdt_shrink_to_minimum(blob, 0);
if (ret < 0)
goto err;
of_size = ret;
if (*initrd_start && *initrd_end) {
of_size += FDT_RAMDISK_OVERHEAD;
fdt_set_totalsize(blob, of_size);
}
/* Create a new LMB reservation */
if (lmb)
lmb_reserve(lmb, (ulong)blob, of_size);
fdt_initrd(blob, *initrd_start, *initrd_end);
if (!ft_verify_fdt(blob))
goto err;
#if defined(CONFIG_SOC_KEYSTONE)
if (IMAGE_OF_BOARD_SETUP)
ft_board_setup_ex(blob, gd- >bd);
#endif
return 0;
err:
printf(" - must RESET the board to recover.nn");
return ret;
}
这里我们只需要关注fdt_chosen函数,定义在common/fdt_support.c;其中rk3399和rk3588 SDK的u-boot源码是不一样的;
以rk3588为例:
int fdt_chosen(void *fdt)
{
int nodeoffset;
int err;
char *str; /* used to set string properties */
// 检查设备树头部是否有效
err = fdt_check_header(fdt);
if (err < 0) {
printf("fdt_chosen: %sn", fdt_strerror(err));
return err;
}
/* find or create "/chosen" node. 查找或创建/chosen节点 */
nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen");
if (nodeoffset < 0)
return nodeoffset;
// 获取环境变量bootargs的值
str = board_fdt_chosen_bootargs(fdt);
if (str) {
// 设置设备树中的bootargs属性
err = fdt_setprop(fdt, nodeoffset, "bootargs", str,
strlen(str) + 1);
if (err < 0) {
printf("WARNING: could not set bootargs %s.n",
fdt_strerror(err));
return err;
}
}
return fdt_fixup_stdout(fdt, nodeoffset);
}
其中board_fdt_chosen_bootargs定义在arch/arm/mach-rockchip/board.c:
char *board_fdt_chosen_bootargs(void *fdt)
{
/* bootargs_ext is used when dtbo is applied. */
const char *arr_bootargs[] = { "bootargs", "bootargs_ext" };
const char *bootargs;
int nodeoffset;
int i, dump;
char *msg = "kernel";
/* debug */
hotkey_run(HK_INITCALL);
dump = is_hotkey(HK_CMDLINE);
if (dump)
printf("## bootargs(u-boot): %snn", env_get("bootargs"));
/* find or create "/chosen" node. */
nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen");
if (nodeoffset < 0)
return NULL;
// 遍历arr_bootargs,检查设备树中是否已有相关的bootargs
for (i = 0; i < ARRAY_SIZE(arr_bootargs); i++) {
// 获取/chosen节点的bootargs、bootargs_ext属性值
bootargs = fdt_getprop(fdt, nodeoffset, arr_bootargs, NULL);
if (!bootargs)
continue;
if (dump)
printf("## bootargs(%s-%s): %snn",
msg, arr_bootargs, bootargs);
/*
* Append kernel bootargs
* If use AB system, delete default "root=" which route
* to rootfs. Then the ab bootctl will choose the
* high priority system to boot and add its UUID
* to cmdline. The format is "roo=PARTUUID=xxxx...".
*/
#ifdef CONFIG_ANDROID_AB
env_update_filter("bootargs", bootargs, "root=");
#else
// 进入,更新bootargs环境变量,追加设备树中配置的bootargs
env_update("bootargs", bootargs);
#endif
}
#ifdef CONFIG_VENDOR_FRIENDLYELEC // 针对FriendlyELEC板卡的处理,进入
char *panel = board_get_panel_name();
// 如果设置了panel,更新bootargs环境变量,比如追加lcd=HD702E,213dpi
if (panel) {
char lcdinfo[128] = { 0 };
strcpy(lcdinfo, "lcd=");
strncat(lcdinfo, panel, sizeof(lcdinfo) - 5);
env_update("bootargs", lcdinfo);
}
#endif
#if defined(CONFIG_ENVF) || defined(CONFIG_ENV_PARTITION)
......
#endif
#ifdef CONFIG_MTD_BLK
......
#endif
#ifdef CONFIG_ANDROID_AB
ab_update_root_partition();
#endif
/*
* Initrd fixup: remove unused "initrd=0x...,0x...",
* this for compatible with legacy parameter.txt
*/
env_delete("bootargs", "initrd=", 0);
/*
* If uart is required to be disabled during
* power on, it would be not initialized by
* any pre-loader and U-Boot.
*
* If we don't remove earlycon from commandline,
* kernel hangs while using earlycon to putc/getc
* which may dead loop for waiting uart status.
* (It seems the root cause is baundrate is not
* initilalized)
*
* So let's remove earlycon from commandline.
*/
if (gd- >flags & GD_**_DISABLE_CONSOLE)
env_delete("bootargs", "earlycon=", 0);
/* Android header v4+ need this handle */
#ifdef CONFIG_ANDROID_BOOT_IMAGE
struct andr_img_hdr *hdr;
hdr = (void *)env_get_ulong("android_addr_r", 16, 0);
if (hdr && !android_image_check_header(hdr) && hdr->header_version >= 4) {
if (env_update_extract_subset("bootargs", "andr_bootargs", "androidboot."))
printf("extract androidboot.xxx errorn");
if (dump)
printf("## bootargs(android): %snn", env_get("andr_bootargs"));
}
#endif
bootargs = env_get("bootargs");
if (dump)
printf("## bootargs(merged): %snn", bootargs);
return (char *)bootargs;
}
以rk3399为例:
int fdt_chosen(void *fdt)
{
/*
* "bootargs_ext" is used when dtbo is applied.
*/
const char *arr_bootargs[] = { "bootargs", "bootargs_ext" };
int nodeoffset;
int err;
int i;
char *str; /* used to set string properties */
int dump;
// 判断HK_CMDLINE是否是热键,返回false
dump = is_hotkey(HK_CMDLINE);
// 检查设备树头部是否有效
err = fdt_check_header(fdt);
if (err < 0) {
printf("fdt_chosen: %sn", fdt_strerror(err));
return err;
}
/* find or create "/chosen" node. 查找或创建/chosen节点 */
nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen");
if (nodeoffset < 0)
return nodeoffset;
// 获取环境变量bootargs的值
str = env_get("bootargs");
if (str) { // 如果环境变量配置了bootargs
#ifdef CONFIG_ARCH_ROCKCHIP // 针对Rockchip架构的处理
const char *bootargs;
if (dump)
printf("## U-Boot bootargs: %sn", str);
// 遍历arr_bootargs,检查设备树中是否已有相关的bootargs
for (i = 0; i < ARRAY_SIZE(arr_bootargs); i++) {
// 获取/chosen节点的bootargs、bootargs_ext属性值
bootargs = fdt_getprop(fdt, nodeoffset,
arr_bootargs, NULL);
// 1. fdt_chosen 389:earlycon=uart8250,mmio32,0xff1a0000 swiotlb=1 coherent_pool=1m
// 2. fdt_chosen 389:root=/dev/mmcblk2p8 rw rootfstype=ext4 rootflags=discard data=/dev/mmcblk2p9 console=ttyFIQ0 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1
printf("%s %d:%sn", __func__, __LINE__, bootargs);
// 如果存在,更新环境变量bootargs
if (bootargs) {
if (dump)
printf("## Kernel %s: %sn",
arr_bootargs, bootargs);
/*
* Append kernel bootargs
* If use AB system, delete default "root=" which route
* to rootfs. Then the ab bootctl will choose the
* high priority system to boot and add its UUID
* to cmdline. The format is "roo=PARTUUID=xxxx...".
*/
hotkey_run(HK_INITCALL);
#ifdef CONFIG_ANDROID_AB // 未定义
env_update_filter("bootargs", bootargs, "root=");
#else // 进入,更新bootargs环境变量,追加设备树中配置的bootargs
env_update("bootargs", bootargs);
#endif
#ifdef CONFIG_MTD_BLK // 未定义
char *mtd_par_info = mtd_part_parse();
if (mtd_par_info) {
if (memcmp(env_get("devtype"), "mtd", 3) == 0)
env_update("bootargs", mtd_par_info);
}
#endif
/*
* Initrd fixup: remove unused "initrd=0x...,0x...",
* this for compatible with legacy parameter.txt
*/
env_delete("bootargs", "initrd=", 0);
/*
* If uart is required to be disabled during
* power on, it would be not initialized by
* any pre-loader and U-Boot.
*
* If we don't remove earlycon from commandline,
* kernel hangs while using earlycon to putc/getc
* which may dead loop for waiting uart status.
* (It seems the root cause is baundrate is not
* initilalized)
*
* So let's remove earlycon from commandline.
*/
if (gd- >flags & GD_**_DISABLE_CONSOLE)
env_delete("bootargs", "earlycon=", 0);
}
}
#endif
#ifdef CONFIG_VENDOR_FRIENDLYELEC // 针对FriendlyELEC板卡的处理,进入
char *panel = board_get_panel_name();
// 如果设置了panel,更新bootargs环境变量,比如追加lcd=HD702E,213dpi
if (panel) {
char lcdinfo[128] = { 0 };
strcpy(lcdinfo, "lcd=");
strncat(lcdinfo, panel, sizeof(lcdinfo) - 5);
env_update("bootargs", lcdinfo);
}
#endif
// 获取更新后的bootargs环境变量,并设置设备树中的bootargs属性
str = env_get("bootargs");
// fdt_chosen 451:storagemedia=emmc androidboot.storagemedia=emmc androidboot.mode=normal androidboot.dtbo_idx=0 earlycon=uart8250,mmio32,0xff1a0000 swiotlb=1 coherent_pool=1m rw root=/dev/mmcblk2p8 rootfstype=ext4 rootflags=discard data=/dev/mmcblk2p9 console=ttyFIQ0 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1 lcd=HD702E,213dpi
printf("%s %d:%sn", __func__, __LINE__, str);
err = fdt_setprop(fdt, nodeoffset, "bootargs", str,
strlen(str) + 1);
if (err < 0) {
printf("WARNING: could not set bootargs %s.n",
fdt_strerror(err));
return err;
}
}
if (dump)
printf("## Merged bootargs: %sn", env_get("bootargs"));
return fdt_fixup_stdout(fdt, nodeoffset);
}
通过分析,可以了解到fdt_chosen 函数主要完成了以下任务:
确保设备树的 /chosen 节点存在;
从环境变量中获取和处理启动参数 bootargs;
根据不同的硬件配置(如Rockchip架构或FriendlyELEC板卡)调整启动参数;
更新设备树中的 bootargs 属性,确保内核可以正确获得启动参数;
修正标准输出设备配置。
在上面代码执行过程中我们输出了/chosen节点的bootargs、bootargs_ext属性值,其中bootargs_ext属性值哪里来的呢?
root=/dev/mmcblk2p8 rw rootfstype=ext4 rootflags=discard data=/dev/mmcblk2p9 console=ttyFIQ0 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1
这个值实际上配置在dtbo.img镜像中,具体可以参考android_fdt_overlay_apply函数,这个我们在接下来的内容会介绍到。
1.4 uboot编译和烧录
1.4.1 编译
如果我们对uboot源码有改动,执行如下命令进行编译;
root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# UBOOT_SRC=$PWD/uboot-rockchip ./build-uboot.sh debian-bullseye-desktop-arm64
编译完成后debian-bullseye-desktop-arm64目录下的uboot.img被更新了。
1.4.2
dd
烧录
由于uboot.img占用的分区是uboot分区,假设SD/TF Card设备节点为/dev/mmcblk0。
我们在ubuntu开启http下载服务,或者使用scp将镜像文件发送到开发版;
root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588/debian-bullseye-desktop-arm64$ python3 -m http.server 8080
开发板下载uboot.img,然后使用如下命令烧录;
root@linaro-alip:/opt# sudo wget 192.168.0.200:8080/uboot.img
root@linaro-alip:/opt# sudo dd if=uboot.img of=/dev/mmcblk0p1 bs=1M
同样如果我们修改了resource.img,也可以使用如下命令烧录;
root@linaro-alip:/opt# sudo wget 192.168.0.200:8080/resource.img
root@linaro-alip:/opt# sudo dd if=resource.img of=/dev/mmcblk0p4 bs=1M
1.5 补充
新创云RK3588核心板介绍
1.1 适用范围
产品采用核心板加底板方式,核心板主要集成四大主件(分别为主控,内存,存储和电源管理),核心板安装可方便拆卸,客户可以快速进行二次开发,主要应用于工业控制,商显,智能家居,汽车电子,医疗设备,产品形态有,广告*,无人值守机器人,送餐机器人,工业应用机器人,平板电脑,学习机,匝机通道,客流统计,车牌识别,数字标牌、智能自助终端、智能零售终端等相关产品。
1.2 产品概述
核心板采用 ROCKCHIP 八核 RK3588 四核 A76+四核 A55,搭载Android/Linux+QT/Ubuntu 系 统 ,A76 主 频 2.4GHz , A55 主 频1.8G,采用 Mali-G610 MP4 GPU,内置 6T 算力 NPU,内存最大支持16GB,支持市面上通用显示屏接口,支持多屏异显,核心板接口丰富,引出全部功能引脚,支持多款外设扩展,是您在人机交互、工控项目上的最佳选择。
1.3 产品特点
◆ BDB 板对板连接器可拆卸式核心板,引脚高达 320P,引出全部功能。
◆ 支持 2 路 HDMI 输出,2 路 MIPI 显示屏,2 路 EDP 显示屏,支持多屏异显。
◆ 内置 6T 算力 NPU。
◆ 最大支持 16GB 内存。
◆ 支持 Android/Linux+QT/麒麟信安、鸿蒙系统定制,提供系统调用接口 API 参考代码,完美支持客户上层应用 APP 开发及SDK。
file:///C:/Users/Admin/AppData/Local/Temp/ksohtml4004/wps1.jpg
主要硬件指标 |
| ROCKCHIP RK3588 八核 A76+A55 |
| |
| |
| |
| EMMC 5.1 标配 8GB 选配 32G/64G/128G |
| |
| |
| |
| |
| |