MOS管 三个管脚: G极(gate)—栅极,不用说比较好认 S极(source)—源极,不论是P沟道还是N沟道,两根线相交的就是 D极(drain)—漏极,不论是P沟道还是N沟道,是单独引线的那边 寄生二极管方向: 不论N沟道还是P沟道MOS管,中间衬底箭头方向和寄生二极管的箭头方向总是一致的:要么都由S指向D,要么都有D指向S 

工作原理 2、为了让其导通,在P型半导体区加上一层很薄的二氧化硅绝缘层,在绝缘层上再加一片金属板形成栅极,如下图所示: 
1、当VGS<VGS(TH)时,MOS管处于截止状态; 2、当VGS>VGS(TH)、VDS<VGS-VGS(TH)时,MOS管导通,且处在线性区,此时可以等效为线性电阻。 3、当VGS>VGS(TH)、VDS>VGS-VGS(TH)时,MOS管导通,且处在饱和区,此时可以等效为电压控制的电流源。 只要MOS管导通,且V_GS>V_DS,则MOS管一定处在饱和区。 
MOSFET主要参数关断电压VP 、极限参数、最大漏级电流Idm 、最大功耗Pdm 。
2、夹断电压VGS(off)(是结型场效应管和耗尽型MOS管的参数) 与VGS(TH)相类似,VGS(off)是在UDS为常量情况下iD为规定的微小电流(如5μA)时的UGS。 4、击穿电压: 管子进入恒流区后,使iDS骤然增大的UDS称为漏-源击穿电压U(BR)DS,UDS超过此值会使管子损坏。 对结型场效应管,使栅极与沟道间PN结反向击穿的UGS为栅-源击穿电压U(BR)GS; 对绝缘栅型场效应管,使绝缘层击穿的UGS为栅-源击穿电压U(BR)GS。 6、直流输入电阻RGS 即在栅源极之间加的电压与栅极电流之比 这一特性有时以流过栅极的栅流表示 MOS管的RGS可以很容易地超过10^10Ω。 8、导通电阻RON 导通电阻RON说明了VDS对ID的影响 ,是漏极特性某一点切线的斜率的倒数 在饱和区,ID几乎不随VDS改变,RON的数值很大 ,一般在几十千欧到几百千欧之间 由于在数字电路中 ,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似 对一般的MOS管而言,RON的数值在几百欧以内 10、低频噪声系数NF 噪声是由管子内部载流子运动的不规则性所引起的 由于它的存在,就使一个放大器即便在没有信号输人时,在输 出端也出现不规则的电压或电流变化 噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB) 这个数值越小,代表管子所产生的噪声越小 低频噪声系数是在低频范围内测出的噪声系数 场效应管的噪声系数约为几个分贝,它比双极性三极管的要小 MOS的特点一般认为MOSFET(MOS管)是电压驱动的,不需要驱动电流。然而,在MOS管的G极和S极之间有结电容存在,这个电容会让驱动MOS变的不那么简单。 下图的3个电容为MOS管的结电容,电感为电路走线的寄生电感: 
1、设计需要注意的地方:如果不考虑纹波、EMI和冲击电流等要求的话,MOS管开关速度越快越好。 因为开关时间越短,开关损耗越小,而在开关电源中开关损耗占总损耗的很大一部分,因此MOS管驱动电路的好坏直接决定了电源的效率。
因为驱动线路走线会有寄生电感,而寄生电感和MOS管的结电容会组成一个LC振荡电路,如果直接把驱动芯片的输出端接到MOS管栅极的话,在PWM波的上升下降沿会产生很大的震荡,导致MOS管急剧发热甚至爆炸,一般的解决方法是在栅极串联10欧左右的电阻(具体可以参考电阻作用章节),降低LC振荡电路的Q值,使震荡迅速衰减掉。 因为MOS管栅极高输入阻抗的特性,一点点静电或者干扰都可能导致MOS管误导通,所以建议在MOS管G极和S极之间并联一个10K的电阻以降低输入阻抗。
如果担心附近功率线路上的干扰耦合过来产生瞬间高压击穿MOS管的话,可以在GS之间再并联一个18V左右的TVS瞬态抑制二极管。TVS可以认为是一个反应速度很快的稳压管,其瞬间可以承受的功率高达几百至上千瓦,可以用来吸收瞬间的干扰脉冲。
MOS管驱动线路的环路面积要尽可能小,否则可能会引入外来的电磁干扰。 驱动芯片的旁路电容要尽量靠近驱动芯片的VCC和GND引脚,否则走线的电感会很大程度上影响芯片的瞬间输出电流。
3、开关时MOS管驱动波形 如果出现了这样圆不溜秋的波形就等着核爆吧。有很大一部分时间管子都工作在线性区,损耗极其巨大。 一般这种情况是布线太长电感太大,栅极电阻都救不了你,只能重新画板子。 在上升下降沿震荡严重,这种情况管子一般瞬间死掉,跟上一个情况差不多,进线性区。 原因也类似,主要是布线的问题。又胖又圆的肥猪波。 上升下降沿极其缓慢,这是因为阻抗不匹配导致的。 芯片驱动能力太差或者栅极电阻太大。 果断换大电流的驱动芯片,栅极电阻往小调调就OK了。 打肿脸充正弦的生于方波他们家的三角波: 
高低电平分明,电平这时候可以叫电平了,因为它平。边沿陡峭,开关速度快,损耗很小,略有震荡,可以接受,管子进不了线性区,强迫症的话可以适当调大栅极电阻。 方方正正的帅哥波,无振铃无尖峰无线性损耗的三无产品,这就是最完美的波形了。
放大作用: 这个一个分压式偏置电路 2、对于放大倍速与输入电阻、输出电阻则要放到交流等效模型中进行计算 可以参考下图基本共源放大电路简化的交流等效电流 

得到 AU=UO/UI=-gmRD RI=∞ RO=RD 分四种情况: 1、当SDA1输出高电平时:MOS管Q1的Vgs = 0,MOS管关闭,SDA2被电阻R3上拉到5V。 2、当SDA1输出低电平时:MOS管Q1的Vgs = 3.3V,大于导通电压,MOS管导通,SDA2通过MOS管被拉到低电平。 3、当SDA2输出高电平时:MOS管Q1的Vgs不变,MOS维持关闭状态,SDA1被电阻R2上拉到3.3V。 4、当SDA2输出低电平时:MOS管不导通,**但是它有体二极管!**MOS管里的体二极管把SDA1拉低到低电平,此时Vgs约等于3.3V,MOS管导通,进一步拉低了SDA1的电压。 注:低电平指等于或接近0V。高电平指等于或接近电源电压。所以3.3V电压域的器件,其高电平为等于或接近3.3V;5V电压域的器件,其高电平为等于或接近5V。
电机驱动H桥电路 功率电子开关(Q1,Q2,Q3,Q4)通常使用双极性功率三极管,或者场效应(FET)晶体管。特殊高压场合使用绝缘栅双极性晶体管(IGBT)。四个并联的二极管(D1,D2,D3,D4)通常被称为钳位二极管(Catch Diode),通常使用肖特基二极管。很多功率MOS管内部也都集成有内部反向导通二极管。H-桥电路上下分别连接电源正负极。 四个功率开关可以通过驱动电路被控制打开(Open)或者闭合(Close)。本质上四个功率管的开关状态组合应该有24 = 16种,但只有其中几种不同的组合才能够真正安全用于负载供电控制。 桥电路可以控制很多负载,但通常情况下会使用脉宽调制(PWM)驱动波形来为直流电机、双极性步进电机等进行高效控制。
下图是相反的情况,通过Q3、Q2的导通,Q1、Q4的断开,电机负载上施加了相反机型的电源电压。电机反转。 
也有一些组合是需要坚决避免的。比如下图所示的,当H-桥电路一边的上下两个晶体管同时导通(同时断开是允许的),电源就会通过这两个晶体管形成短路回路。所产生巨大的短路电流通常会毫不客气的将这两个晶体管给烧毁。 
同边桥臂短路情况有时是控制信号不好(没有给足死区时间),有时是功率器件不够坚强(耐压不够被击穿)。但由于关系到H桥电路的生死,所以需要精细避免。
MOS管的测量现在由于生产工艺的进步,出厂的筛选、检测都很严格,我们一般判断只要判断MOS管不漏电、不击穿短路、内部不断路、能放大就可以了,方法极为简单:采用万用表的R×10K挡;R×10K挡内部的电池一般是9V加1.5V达到10.5V这个电压一般判断PN结点反相漏电是够了,万用表的红表笔是负电位(接内部电池的负极),万用表的黑表笔是正电位(接内部电池的正极),如图所示。(电池要保证电压足够大于9V,用快没电的电池可能会测不出)
保持上述状态;此时用一只100K~200K电阻连接于栅极和漏极,如下图所示;这时表针指示欧姆数应该越小越好,一般能指示到0欧姆,这时是正电荷通过100K电阻对MOS管的栅极充电,产生栅极电场,由于电场产生导致导电沟道致使漏极和源极导通,所以万用表指针偏转,偏转的角度大(欧姆指数小)证明放电性能好。 
这时用一根导线,连接被测管的栅极和源极,万用表的指针立即返回到无穷大,如上图所示。导线的连接使被测MOS管,栅极电荷释放,内部电场消失;导电沟道也消失,所以漏极和源极之间电阻又变成无穷大。 
MOS管的更换在修理电视机及各种电器设备时,遇到元器件损坏应该采用相同型号的元件进行更换。但是,有时相同的元件手边没有,就要采用其他型号的进行代换,这样就要考虑到各方面的性能、参数、外形尺寸等,例如电视的里面的行输出管,只要考虑耐压、电流、功率一般是可以进行代换的(行输出管外观尺寸几乎相同),而且功率往往大一些更好。
对于MOS管代换虽然也是这一原则,最好是原型号的最好,特别是不要追求功率要大一些,因为功率大;输入电容就大,换了后和激励电路就不匹配了,激励灌流电路的充电限流电阻的阻值的大小和MOS管的输入电容是有关系的,选用功率大的尽管容量大了,但输入电容也就大了,激励电路的配合就不好了,这反而会使MOS管的开、关性能变坏。所示代换不同型号的MOS管,要考虑到其输入电容这一参数。
例如有一款42寸液晶电视的背光高压板损坏,经过检查是内部的大功率MOS管损坏,因为无原型号的代换,就选用了一个,电压、电流、功率均不小于原来的MOS管替换,结果是背光管出现连续的闪烁(启动困难),最后还是换上原来一样型号的才解决问题。
检测到MOS管损坏后,更换时其周边的灌流电路的元件也必须全部更换,因为该MOS管的损坏也可能是灌流电路元件的欠佳引起MOS管损坏。即便是MOS管本身原因损坏,在MOS管击穿的瞬间,灌流电路元件也受到伤害,也应该更换。就像我们有很多高明的维修师傅在修理A3开关电源时;只要发现开关管击穿,就也把前面的2SC3807激励管一起更换一样道理(尽管2SC3807管,用万用表测量是好的)。
常见问题:为什么OD(开漏)和OC(开集)输出必须加上拉电阻?答:因为MOS管和三极管关闭时,D、C是高阻态,输出无确定电平,必须提供上拉电平,确定高电平时的输出电压。
CMOS与TTL电路的接口在TTL工艺逻辑芯片中,目前仍在使用的仅存OC输出反向驱动器7406、OC输出同向驱动器7407芯片,因此在应用中还是有可能出现CMOS芯片驱动7406、7407或出现7406、7407驱动CMOS芯片的情况。
2、7406、7407驱动CMOS 此情景下,TTL的最小输出高电平电压VOH小于CMOS的最小输入低电平电压VIH、而TTL的输出低电平最大电压VOL小于CMOS最大输入低电平电压VIL。所以在相接时要接上拉电阻。 如下图所示: 且输出级NPN型三极管的最大耐压为30V,而CMOS电源电压VDD不超过18V,因此在7406、7407的输出端与CMOS负载门电源引脚VDD之间接上拉电阻RL后就能满足负载门输入电压的要求。 
MOS管与三极管的区别1、工作性质:三极管用电流控制,MOS管属于电压控制。 2、成本问题:三极管便宜,MOS管贵。 3、功耗问题:三极管损耗大,MOS管较小。 4、驱动能力:mos管常用来电源开关,以及大电流地方开关电路。 下面针对一些电路设计当中会呈现的情况,列出了几种MOS管和三级管的选择规律: 1、MOS管是电压控制元件,而三级管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用MOS管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用三极管。 2、电力电子技术中提及的单极器件是指只靠一种载流子导电的器件,双极器件是指靠两种载流子导电的器件。MOS管是应用一种多数载流子导电,所以称之为单极型器件,而三极管是既有多数载流子,也应用少数载流子导电。被称之为双极型器件。 3、有些MOS管的源极和漏极可以互换运用,栅压也可正可负,灵活性比三极管好。 4、MOS管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很便当地把很多MOS管集成在一块硅片上,因此MOS管在大范围集成电路中得到了普遍的应用。 5、MOS管具有较高输入阻抗和低噪声等优点,因而也被普遍应用于各种电子设备中。特别用MOS管做整个电子设备的输入级,可以获得普通三极管很难抵达的性能。 如何区分MOS管和三极管用万用表的二极管档(或1k~10k电阻档)测量,三极管的发射极和集电极都对基极单向导通,而发设计和集电极之间互不导通;利用这一点可以确定是否三极管以及类型(PNP管或NPN管);场效应管则比较复杂,增强型和耗尽型的特点都不一样,但是栅极对源极和漏极一定是不导通的,MOS管也一样,MOS管也是场效应管的一种,只是输入阻抗更高而已。
转载请注明出处:https://javaforall.cn/151796.html
|