[家用电器] 防反保护电路

[复制链接]
204|0
sdlls 发表于 2025-10-21 14:07 | 显示全部楼层 |阅读模式
NMOS设计具有 NMOS 和驱动IC 的防反保护电路时,NMOS 需放置在高边,驱动IC也从高边取电,这里将产生一个大于输入电压 (VIN) 的内部电压,给 NMOS 提供 (VGS)驱动供电。
根据驱动电源产生的原理,驱动IC可以采用电荷泵方案或升降压(Buck-Boost)方案。具体描述如下:
  • 电荷泵防反保护方案: 电荷泵方案具有较低的总体BOM 需求,从而可降低成本。该方案非常适合小电流应用,例如汽车 USB 供电设备 (PD) 大功率充电模块。
  • 升降压防反保护方案: 升降压方案提供强大的驱动能力和出色的EMC 性能。该方案非常适合大电流和高性能环境,例如汽车域控制器和音响系统。
图 1 显示了电荷泵方案与升降压方案的特性。



f6b246f27f3d151edd6ad50e271c607fa06a5ed8.png@1192w.webp
图 1:电荷泵方案与升降压(Buck-Boost)方案
驱动IC的工作原理图2显示了具有电荷泵拓扑的NMOS驱动简化工作原理图。


ad3de176be64c16e4fd1d08fb3c8a40c4f7be08b.png@1192w.webp


图 2:电荷泵拓扑的工作原理图
CLK周期描述如下:
  • S1和S2导通
  • C0 由内部对地电压源充电
  • S3和S4导通
  • C1 由 C0 上的电压充电
C0 是具有快速充电和放电速度的小电容,而 C1 则是具有大负载能力的大电容。因此,通过S1和S2(以及S3和S4)的频繁切换, C0 上的电荷可以不断传输给 C1,而 C1 的负端连接至电池电压 (VBATT)。最终,NMOS由一个大于 VBATT 的电压驱动。
图 3 显示了具有升降压拓扑的 NMOS 驱动简化工作原理图。



14ff0a30bf1168735b5195d1d78cb260a010bdaf.png@1192w.webp
图 3:升降压拓扑的工作原理图
在升降压拓扑中,功率MOSFET放在低边。当 S_BAT 导通时, VIN 对电感充电,电感电压为负;当S_BAT关断时,电感将通过二极管释放能量,电感电压为正,并为 C1充电。当 C1 上的电压超过 VBATT 时,NMOS栅极将被驱动。


0098ac41efc7b8a8b9326fef77eab8c55d819a6b.png@1192w.webp


升降压驱动 IC 的优势
在防反保护驱动 IC 中采用升降压驱动 IC 有两个明显优势:增强驱动电流能力并提高 EMC 性能。
驱动电流能力升降压拓扑可以提供更大的驱动电流能力和更快的输入干扰响应能力。例如,输入叠加100kHz,峰峰值2V条件下进行实测。测量结果如图 4所示,其中包含输入防反保护 MOSFET 的源极电压(粉色)、通过防反保护 MOSFET 的漏极电压(浅蓝色)、MOSFET 驱动 VGS (红色)和负载电流(绿色)。



44f99cf40c3193f900c29f18e421656355880102.png@1192w.webp
图 4:升降压拓扑的测量波形(叠加交流纹波脉冲 = 100kHz,峰-峰值 = 2V)
波形显示出,驱动IC实时监测了NMOS的漏极与源极。在测试条件下,输入电压 (VIN) 与源极电压 (VS)一致,而系统电压则与漏极电压 (VD)一致。如果 VS 低于 VD,则 VIN 低于系统电压,MOSFET 驱动关断,体二极管提供防反保护功能防止电容电流回流;如果 VS 超过 VD,则 VIN 超过系统电压,MOSFET 驱动导通,可避免体二极管导通影响效率。如果采用电荷泵型防反驱动,由于其驱动电流能力不强,在输入电压快速波动时,容易产生门极驱动脉冲丢失或者常开的异常现象。我们对电荷泵防反保护电路进行测量。测量结果如图 5所示,其中包括防反保护 MOSFET 的输入源极电压(黄色)、输出漏极电压(红色)、驱动 VGS(绿色)和负载电流(蓝色)。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

63

主题

5291

帖子

2

粉丝
快速回复 在线客服 返回列表 返回顶部