FIR滤波器具有幅度特性可随意设计、线性相位特性可严格精确保证等优点,因此在要求相位线性信道的现代电子系统,如图像处理、数据传输等波形传递系统中,具有很大吸引力。本文简单介绍了其线性相位条件和设计方法,并且提供了一种用DSP实现的方法。
一、 引 言
在许多信息处理过程中,如对信号的过滤、检测、预测等,都要广泛地用到滤波器,而数字滤波器则因其设计灵活、实现方便等特点而广为接受。
所谓数字滤波器就是具有某种选择性的器件、网络或以计算机硬件支持的计算程序。其功能本质是按事先设计好的程序,将一组输入的数字序列通过一定的运算后转变为另一组输出的数字序列,从而改变信号的形式和内容,达到对信号加工或滤波以符合技术指标的要求。
二、 数字滤波器的两种类型
对于一般的数字滤波器,按照单位冲激响应可分为无限长冲激响应IIR(Infinite Impulse Response)系统和有限长冲激响应FIR(Finite Impulse Response)系统。
在IIR系统中,用有理分式表示的系统函数来逼近所需要的频率响应,即其单位冲激响应h(n)是无限长的;而在FIR系统中,则用一个有理多项式表示的系统函数去逼近所需要的频率响应,即其单位冲激响应h(n)在有限个n值处不为零。
IIR滤波器由于吸收了模拟滤波器的结果,有大量的图表可查,可以方便、简单、有效地完成设计,效果很好,但是其相位特性不好控制,必须用全通网络进行复杂的相位较正,才能实现线性相位特性的要求。
FIR滤波器则可在幅度特性随意设计的同时,保证精确、严格的线性相位特性。这在要求相位线性信道的现代电子系统,如图像处理、数据传输等波形传递系统中,是具有很大吸引力的。而且,其单位冲激响应是有限长的,不存在不稳定的因素,并且可用因果系统来实现。
下面着重讨论具有线性相位特性的FIR滤波器。
三、 FIR滤波器线性相位特性的条件及设计方法
1.线性相位条件
为保证滤波器带内输出信号的形状保持不变,常常要求滤波器单位冲激响应h(n)的频率响应H(ejω)应具有线性的相频特性,即H(ejω)=H(ω)e-jωk,其中H(ω)为幅频特性,k为正整数。由傅氏变换的特性可知,线性相位滤波器只是将信号在时域上延迟了k个采样点,因此不会改变输入信号的形状。
可以证明,如果滤波器单位冲激响应h(n)为实数,且满足:偶对称即h(n)=h(N-1-n)或奇对称h(n)=-h(N-1-n)时,则其相频特性一定是线性的。 |