如式(9)所示,64点FFT可分解为384个蝶形运算单元。
n=Nlog N (9)
式中:N为FFT点数;n为所需的蝶形运算单元的个数。
式(5)和(6)各包含1个复数加法运算和1个复数乘法运算,需要2个加法器和4个乘法器实现。但经过如式(10)所示的运算后的复数乘法可用三乘法器实现,因此综合后的资源先比四乘法器架构优化了25%,
(A1+B1i)(A2+B2i)=(A1A2-B1B2)(A1B2-A2B1)i=A1(A2+B2)=B2(A1+B1)+[A1(A2+B2)-A2(A1+B1)] (10)
旋转因子WN的二进制表示可看作是若干项2次幂数相加组合而成的数,那么一个数与WN相乘即可通过在移位操作的基础上执行相应的加法操作来实现。根据正弦函数与余弦函数的对称性,第5阶与第6阶与相乘所占用的乘法器完全可以省略。

如式(11)所示,在WN的二进制序列中,在不引入噪声的基础上把N个移位寄存器和N-1个加法器的运算用2个移位寄存器和1个减法器来实现。这样不仅可以大大减少硬件资源的消耗,最大的优点是不消耗RAM和乘法器资源,因此速度很快。
|